89 resultados para Nodal Zeros
Resumo:
Free vibration analysis is carried out to study the vibration characteristics of composite laminates using the modified shear deformation, layered, composite plate theory and employing the Rayleigh-Ritz energy approach. The analysis is presented in a unified form so as to incorporate all different combinations of laminate boundary conditions and with full coverage with regard to the various design parameters of a laminated plate. A parametric study is made using a beam characteristic function as the admissible function for the numerical calculations. The numerical results presented here are for an example case of fully clamped boundary conditions and are compared with previously published results. The effect of parameters, such as the aspect ratio of plates, ply-angle, number of layers and also the thickness ratios of plies in laminates on the frequencies of the laminate, is systematically studied. It is found that for anti-symmetric angle-ply or cross-ply laminates unique numerical values of the thickness ratios exist which improve the vibration characteristics of such laminates. Numerical values of the non-dimensional frequencies and nodal patterns, using the thickness ratio distribution of the plies, are then obtained for clamped laminates, fabricated out of various commonly used composite materials, and are presented in the form of the design curves.
Resumo:
Schoeffler has derived continuously equivalent networks in the nodal-admittance domain. The letter derives a corresponding result in state space that combines the usefulness of Schoeffler's result and the power of the state-variable approach.
Resumo:
The classical Rayleigh-Ritz method with simple polynomials as admissible functions has been used for obtaining natural frequencies of transversely vibrating polar orthotropic annular plates. The method in conjunction with transformations introduced in the analysis has been found to be quite effective, particularly for large hole sizes. Estimates of natural frequencies corresponding to modes with one as well as two nodal diameters are obtained for the nine combinations of clamped, simply supported and free edge conditions and for various values of rigidity ratio and hole sizes. Based on the variation of eigenvalue parameter with rigidity ratio, the frequencies of these modes as well as those of axisymmetric modes have been expressed by means of simple formulae in terms of rigidity ratio and the frequencies of corresponding modes in the isotropic case. These formulae have been used in determining the fundamental frequencies of orthotropic plates.
Resumo:
The relationship for the relaxation time(s) of a chemical reaction in terms of concentrations and rate constants has been derived from the network thermodynamic approach developed by Oster, Perelson, and Katchalsky.Generally, it is necessary to draw the bond graph and the “network analogue” of the reaction scheme, followed by loop or nodal analysis of the network and finally solving of the resulting differential equations. In the case of single-step reactions, however, it is possible to obtain an expression for the relaxation time. This approach is simpler and elegant and has certain advantages over the usual kinetic method. The method has been illustrated by taking different reaction schemes as examples.
Resumo:
A method based on an assumption that the radial bending moment is zero at a nodal circle is shown to yield accurate estimates of natural frequencies corresponding to higher modes of transversely vibrating polar orthotropic annular plates for various combinations of clamped, simply supported and free edge conditions. This method is found to be convenient for the determination of locations of nodal circles as well. Numerical investigations revealed that for small holes, nodal circles tend to move towards the outer edge with increasing number of nodal diameters. For large holes, it has been shown that the plate behaves like a long rectangular strip.
Resumo:
The vibration problems of skew plates with different edge conditions involving simple support and clamping have been considered by using the variational method of Ritz, a double series of beam characteristic functions being employed appropriate to the combination of the edge conditions. Natural frequencies and modes of vibration have been obtained for different combinations of side ratio and skew angle. These detailed studies reveal several interesting features concerning the frequency curves and nodal patterns. The results presented should, in addition, be of considerable value and practical significance in design applications.
Resumo:
A method based on an assumption that the radial bending moment is zero at a nodal circle is shown to yield accurate estimates of natural frequencies corresponding to higher modes of transversely vibrating polar orthotropic annular plates for various combinations of clamped, simply supported and free edge conditions. This method is found to be convenient for the determination of locations of nodal circles as well. Numerical investigations revealed that for small holes, nodal circles tend to move towards the outer edge with increasing number of nodal diameters. For large holes, it has been shown that the plate behaves like a long rectangular strip.
Resumo:
Induction of single and multiple shoots was obtained from nodal expiants of 60–80 year-old elite trees of rosewood on Murashige and Skoog's basal medium supplemented with 6-benzylaminopurine (1.0 mg 1-1) and delta -Naphthalene acetic acid (0.05 mg 1-1) or indole acetic acid (0.5 mg 1-1). Multiplication of shoots was obtained on MS (reduced major elements) or Woody Plant Medium supplemented with 6-benzylaminopurine (1.0 mg 1-1) and kinetin (0.5–1.0 mg 1-1). Excised shoots were rooted on half-strength MS with IBA (2.0 mg 1-1) to obtain complete plantlets. The regenerated plantlets have been acclimatized and successfully transferred to the soil.
Resumo:
The deviation in the performance of active networks due to practical operational amplifiers (OA) is mainly because of the finite gain bandwidth productBand nonzero output resistanceR_0. The effect ofBandR_0on two OA impedances and single and multi-OA filters are discussed. In filters, the effect ofR_0is to add zeros to the transfer function often making it nonminimum phase. A simple method of analysis has been suggested for 3-OA biquad and coupled biquad circuits. A general method of noise minimization of the generalized impedance converter (GIC), while operating OA's within the prescribed voltage and current limits, is also discussed. The 3-OA biquadratic sections analyzed also exhibit noise behavior and signal handling capacity similar to the GIC. The GIC based structures are found to be better than other configurations both in biquadratic sections and direct realizations of higher order transfer functions.
Resumo:
The cell suspension cultures, established from the friable callus which was risen from the nodal segments of Dioscorea bulbifera L. in Murashige-Skoog (MS) medium supplemented with indole-3-butryic acid (20 mg L- 1), was examined for cell growth in MS medium fed with cholesterol (50 mg L- 1 and 100 mg L- 1) after 8, 10, 12, 14, 16, and 18 days of culture. The growth index of the cell suspension culture on the 8th day was 1.2 and gradually inclined to 1.9 on the 16th day and remained the same at the 18th day. There is no marked difference in the cell growth of cholesterol-treated and control cell suspension culture. The maximum accumulation of diosgenin was noticed on the 14th day in control and cholesterol-treated cell suspension culture and immobilised cell cultures. The highest concentration of diosgenin, 2.94% and 2.14% dry weight, was obtained in immobilised cell culture and cell suspension culture treated with 100 mg L- 1 cholesterol, respectively.
Resumo:
We explore an isoparametric interpolation of total quaternion for geometrically consistent, strain-objective and path-independent finite element solutions of the geometrically exact beam. This interpolation is a variant of the broader class known as slerp. The equivalence between the proposed interpolation and that of relative rotation is shown without any recourse to local bijection between quaternions and rotations. We show that, for a two-noded beam element, the use of relative rotation is not mandatory for attaining consistency cum objectivity and an appropriate interpolation of total rotation variables is sufficient. The interpolation of total quaternion, which is computationally more efficient than the one based on local rotations, converts nodal rotation vectors to quaternions and interpolates them in a manner consistent with the character of the rotation manifold. This interpolation, unlike the additive interpolation of total rotation, corresponds to a geodesic on the rotation manifold. For beam elements with more than two nodes, however, a consistent extension of the proposed quaternion interpolation is difficult. Alternatively, a quaternion-based procedure involving interpolation of relative rotations is proposed for such higher order elements. We also briefly discuss a strategy for the removal of possible singularity in the interpolation of quaternions, proposed in [I. Romero, The interpolation of rotations and its application to finite element models of geometrically exact rods, Comput. Mech. 34 (2004) 121–133]. The strain-objectivity and path-independence of solutions are justified theoretically and then demonstrated through numerical experiments. This study, being focused only on the interpolation of rotations, uses a standard finite element discretization, as adopted by Simo and Vu-Quoc [J.C. Simo, L. Vu-Quoc, A three-dimensional finite rod model part II: computational aspects, Comput. Methods Appl. Mech. Engrg. 58 (1986) 79–116]. The rotation update is achieved via quaternion multiplication followed by the extraction of the rotation vector. Nodal rotations are stored in terms of rotation vectors and no secondary storages are required.
The partition of unity finite element method for elastic wave propagation in Reissner-Mindlin plates
Resumo:
This paper reports a numerical method for modelling the elastic wave propagation in plates. The method is based on the partition of unity approach, in which the approximate spectral properties of the infinite dimensional system are embedded within the space of a conventional finite element method through a consistent technique of waveform enrichment. The technique is general, such that it can be applied to the Lagrangian family of finite elements with specific waveform enrichment schemes, depending on the dominant modes of wave propagation in the physical system. A four-noded element for the Reissner-indlin plate is derived in this paper, which is free of shear locking. Such a locking-free property is achieved by removing the transverse displacement degrees of freedom from the element nodal variables and by recovering the same through a line integral and a weak constraint in the frequency domain. As a result, the frequency-dependent stiffness matrix and the mass matrix are obtained, which capture the higher frequency response with even coarse meshes, accurately. The steps involved in the numerical implementation of such element are discussed in details. Numerical studies on the performance of the proposed element are reported by considering a number of cases, which show very good accuracy and low computational cost. Copyright (C)006 John Wiley & Sons, Ltd.
Resumo:
A detailed investigation of the natural frequencies and mode shapes of simply supported symmetric trapezoidal plates is undertaken in this paper. For numerical calculations, the relationship that exists between the eigenvalue problem of a polygonal simply supported plate and the eigenvalue problem of polygonal membrane of the same shape is utilized with advantage. The deflection surface is expressed in terms of a Fourier sine series in transformed coordinates and the Galerkin method is used. Results are presented in the form of tables and graphs. Several features like the crossing of frequency curves and the metamorphosis of some of the nodal patterns are observed. By a suitable interpretation of the modes of those symmetric trapezoidal plates which have the median as the nodal line, the results for some of the modes of unsymmetrical trapezoidal plates are also deduced.
Resumo:
The vibration of simply supported skew plates having a linear variation in thickness in one direction is considered. Approximate analysis is made by using Lagrange's equations employing the double Fourier sine series in oblique co-ordinates to represent the deflected surface. Natural frequencies are obtained for rhombic plates for several ranges of thickness variation and skew angle. The nodal patterns plotted for a few typical configurations show interesting metamorphoses with variation in thickness and skew angle.
Resumo:
This paper deals with the investigation of the vibration characteristics of simply-supported unsymmetric trapezoidal plates. For numerical calculations, the relationship between the eigenvalue problems of a polygonal simply-supported plate and polygonal membrane is again effectively utilized. The Galerkin method is applied, with the deflection surface expressed in terms of a Fourier sine series in transformed coordinates. Numerical values for the first seven to eight frequencies for different geometries of the unsymmetric trapezoid are presented in the form of tables. Also the nodal patterns for a few representative configurations are presented.