310 resultados para Newtonian fluids
Resumo:
The flow generated by the rotation of a sphere in an infinitely extending fluid has recently been studied by Goldshtik. The corresponding problem for non-Newtonian Reiner-Rivlin fluids has been studied by Datta. Bhatnagar and Rajeswari have studied the secondary flow between two concentric spheres rotating about an axis in the non-Newtonian fluids. This last investigation was further generalised by Rajeswari to include the effects of small radial suction or injection. In Part A of the present investigation, we have studied the secondary flow generated by the slow rotation of a single sphere in non-Newtonian fluid obeying the Rivlin-Ericksen constitutive equation. In Part B, the effects of small suction or injection have been studied which is applied in an arbitrary direction at the surface of the sphere. In the absence of suction or injection, the secondary flow for small values of the visco-elastic parameter is similar to that of Newtonian fluids with inclusion of inertia terms in the Oseen approximation. If this parameter exceeds Kc = 18R/219, whereR is the Reynolds number, the breaking of the flow field takes place into two domains, in one of which the stream lines form closed loops. For still higher values of this parameter, the complete reversal of the sense of the flow takes place. When suction or injection is included, the breaking of the flow persists under certain condition investigated in this paper. When this condition is broken, the breaking of the flow is obliterated.
Resumo:
Drop formation from single nozzles under pulsed flow conditions in non-Newtonian fluids following the power law model has been studied. An existing model has been modified to explain the experimental data. The flow conditions employed correspond to the mixer—settler type of operation in pulsed sieve-plate extraction columns. The modified model predicts the drop sizes satisfactorily. It has been found that consideration of non-Newtonian behaviour is important at low pulse intensities and its significance decreases with increasing intensity of pulsation. Further, the proposed model for single orifices has been tested to predict the sizes of drops formed from a sieve-plate distributor having four holes, and has been found to predict the sizes fairly well in the absence of coalescence.
Resumo:
The analysis of steady laminar forced convection boundary layer of power-law non-Newtonian fluids on a continuously moving cylinder with the surface maintained at a uniform temperature or uniform heat flux is presented. Of interest were the effects of power-law viscosity index, transverse curvature, generalized Prandtl number and streamwise coordinate on the local Nusselt number as well as on the velocity and temperature profiles. The two thermal boundary conditions yield quite similar results. Comparison of the calculated results with available series expansion solutions for a Newtonian fluid shows a very good performance of the present numerical procedure.
Resumo:
The unsteady magnetohydrodynamic viscous flow and heat transfer of Newtonian fluids induced by an impulsively stretched plane surface in two lateral directions are studied by using an analytic technique, namely, the homotopy method. The analytic series solution presented here is highly accurate and uniformly valid for all time in the entire region. The effects of the stretching ratio and the magnetic field on the surface shear stresses and heat transfer are studied. The surface shear stresses in x- and y-directions and the surface heat transfer are enchanced by increasing stretching ratio for a fixed value of the magnetic parameter. For a fixed stretching ratio, the surface shear stresses increase with the magnetic parameter, but the heat transfer decreases. The Nusselt number takes longer time to reach the steady state than the skin friction coefficients. There is a smooth transition from the initial unsteady state to the steady state.
Resumo:
An analysis has been carried out to study the non-Darcy natural convention flow of Newtonian fluids on a vertical cone embedded in a saturated porous medium with power-law variation of the wall temperature/concentration or heat/mass flux and suction/injection with the streamwise distance x. Both non-similar and self-similar solutions have been obtained. The effects of non-Darcy parameter, ratio of the buoyancy forces due to mass and heat diffusion, variation of wall temperature/concentration or heat/mass flux and suction/injection on the Nusselt and Sherwood numbers have been studied.
Resumo:
An exact aerodynamic noise equation is formulated for Newtonian fluids. The cause−effect problem is discussed. Finally, the importance of external additions of mass, momentum, and energy is examined. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
Following the method due to Bhatnagar (P. L.) [Jour. Ind. Inst. Sic., 1968, 1, 50, 1], we have discussed in this paper the problem of suction and injection and that of heat transfer for a viscous, incompressible fluid through a porous pipe of uniform circular cross-section, the wall of the pipe being maintained at constant temperature. The method utilises some important properties of differential equations and some transformations that enable the solution of the two-point boundary value and eigenvalue problems without using trial and error method. In fact, each integration provides us with a solution for a suction parameter and a Reynolds number without imposing the conditions of smallness on them. Investigations on non-Newtonian fluids and on other bounding geometries will be published elsewhere.
Resumo:
The unsteady laminar mixed convection boundary layer flow of a thermomicropolar fluid over a long thin vertical cylinder has been studied when the free stream velocity varies with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite difference scheme in combination with the quasilinearization technique. The results show that the buoyancy, curvature and suction parameters, in general, enhance the skin friction, heat transfer and gradient of microrotation, but the effect of injection is just opposite. The skin friction and heat transfer for the micropolar fluid are considerably less than those for the Newtonian fluids. The effect of microrotation parameter is appreciable only on the microrotation gradient. The effect of the Prandtl number is appreciable on the skin friction, heat transfer and gradient of microtation.
Resumo:
The stability of fluid flow past a membrane of infinitesimal thickness is analysed in the limit of zero Reynolds number using linear and weakly nonlinear analyses. The system consists of two Newtonian fluids of thickness R* and H R*, separated by an infinitesimally thick membrane, which is flat in the unperturbed state. The dynamics of the membrane is described by its normal displacement from the flat state, as well as a surface displacement field which provides the displacement of material points from their steady-state positions due to the tangential stress exerted by the fluid flow. The surface stress in the membrane (force per unit length) contains an elastic component proportional to the strain along the surface of the membrane, and a viscous component proportional to the strain rate. The linear analysis reveals that the fluctuations become unstable in the long-wave (alpha --> 0) limit when the non-dimensional strain rate in the fluid exceeds a critical value Lambda(t), and this critical value increases proportional to alpha(2) in this limit. Here, alpha is the dimensionless wavenumber of the perturbations scaled by the inverse of the fluid thickness R*(-1), and the dimensionless strain rate is given by Lambda(t) = ((gamma) over dot* R*eta*/Gamma*), where eta* is the fluid viscosity, Gamma* is the tension of the membrane and (gamma) over dot* is the strain rate in the fluid. The weakly nonlinear stability analysis shows that perturbations are supercritically stable in the alpha --> 0 limit.
Resumo:
Simplified equations are derived for a granular flow in the `dense' limit where the volume fraction is close to that for dynamical arrest, and the `shallow' limit where the stream-wise length for flow development (L) is large compared with the cross-stream height (h). The mass and diameter of the particles are set equal to 1 in the analysis without loss of generality. In the dense limit, the equations are simplified by taking advantage of the power-law divergence of the pair distribution function chi proportional to (phi(ad) - phi)(-alpha), and a faster divergence of the derivativ rho(d chi/d rho) similar to (d chi/d phi), where rho and phi are the density and volume fraction, and phi(ad) is the volume fraction for arrested dynamics. When the height h is much larger than the conduction length, the energy equation reduces to an algebraic balance between the rates of production and dissipation of energy, and the stress is proportional to the square of the strain rate (Bagnold law). In the shallow limit, the stress reduces to a simplified Bagnold stress, where all components of the stress are proportional to (partial derivative u(x)/partial derivative y)(2), which is the cross-stream (y) derivative of the stream-wise (x) velocity. In the simplified equations for dense shallow flows, the inertial terms are neglected in the y momentum equation in the shallow limit because the are O(h/L) smaller than the divergence of the stress. The resulting model contains two equations, a mass conservation equations which reduces to a solenoidal condition on the velocity in the incompressible limit, and a stream-wise momentum equation which contains just one parameter B which is a combination of the Bagnold coefficients and their derivatives with respect to volume fraction. The leading-order dense shallow flow equations, as well as the first correction due to density variations, are analysed for two representative flows. The first is the development from a plug flow to a fully developed Bagnold profile for the flow down an inclined plane. The analysis shows that the flow development length is ((rho) over barh(3)/B) , where (rho) over bar is the mean density, and this length is numerically estimated from previous simulation results. The second example is the development of the boundary layer at the base of the flow when a plug flow (with a slip condition at the base) encounters a rough base, in the limit where the momentum boundary layer thickness is small compared with the flow height. Analytical solutions can be found only when the stream-wise velocity far from the surface varies as x(F), where x is the stream-wise distance from the start of the rough base and F is an exponent. The boundary layer thickness increases as (l(2)x)(1/3) for all values of F, where the length scale l = root 2B/(rho) over bar. The analysis reveals important differences between granular flows and the flows of Newtonian fluids. The Reynolds number (ratio of inertial and viscous terms) turns out to depend only on the layer height and Bagnold coefficients, and is independent of the flow velocity, because both the inertial terms in the conservation equations and the divergence of the stress depend on the square of the velocity/velocity gradients. The compressibility number (ratio of the variation in volume fraction and mean volume fraction) is independent of the flow velocity and layer height, and depends only on the volume fraction and Bagnold coefficients.
Resumo:
The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.
Resumo:
Mixing at low Reynolds number is usually due to diffusion and requires longer channel lengths for complete mixing. In order to reduce the mixing lengths, advective flow can be induced by varying the channel geometry. Additionally, in non-newtonian fluids, appropriate modifications to channel geometry can be used to aid the mixing process by capitalizing on their viscoelastic nature. Here we have exploited the advection and viscoelastic effects to implement a planar passive micro-mixer. Microfluidic devices incorporating different blend of mixing geometries were conceived. The optimum design was chosen based on the results of the numerical simulations performed in COMSOL. The chosen design had sudden expansion and contraction along with teeth patterns along the channel walls to improve mixing. Mixing of two different dyes was performed to validate the mixing efficiency. Particle dispersion experiments were also carried out. The results indicated effective mixing. In addition, the same design was also found to be compatible with electrical power free pumping mechanism like suction. The proposed design was then used to carry out on-chip chemical cell lysis with human whole blood samples to establish its use with non-newtonian fluids. Complete lysis of the erythrocytes was observed leaving behind the white blood cells at the outlet.
Resumo:
Bhatnagar and Rathna (Quar. Journ. Mech. Appl. Maths., 1963,16, 329) investigated the flows of Newtonian, Reiner-Rivlin and Rivlin-Ericksen fluids between two rotating coaxial cones. In case of the last two types of fluids, they predicted the breaking of secondary flow field in any meridian plane. We find that such breaking is avoided by the application of a sufficiently strong azimuthal magnetic field arising from a line current along the axis of the cones.
Resumo:
The problem of combined convection from vertical surfaces in a porous medium saturated with a power-law type non-Newtonian fluid is investigated. The transformed conservation laws are solved numerically for the case of variable surface heat flux conditions. Results for the details of the velocity and temperature fields as well as the Nusselt number have been presented. The viscosity index ranged from 0.5 to 2.0.