23 resultados para N-alkane


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binary mixtures have strong influence on activities of polymers and biopolymers even at low cosolvent concentration. Among the several aqueous binary mixtures studied, water-DMSO especially stands out for its unusual behavior at certain specific concentrations of DMSO. In the present work, we study the effect of water-DMSO binary mixture on polymers and biopolymers by taking a simple linear hydrocarbon chain of intermediate length (n = 30) and the protein lysozyme, respectively. We find that at a mole fraction of 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, the hydrocarbon chain adopts the collapsed conformation as the most stable and rigid state. In this case of 0.05 mole fraction of DMSO in bulk, the DMSO concentration in the first hydration layer around the polymer is found to be as large as 17%. Formation of such hydrophobic environment around the polymer is the reason for the collapsed state gaining so much stability. Interestingly, similar quench of conformational fluctuation is also observed for the protein investigated. It is observed that in the case of alkane polymer chains, long wavelength fluctuation gets easily quenched, the polymer being purely hydrophobic. However, in case of the protein, quench of fluctuation is prominent only at the hydrophobic surface, and quench of long wavelength fluctuation becomes insignificant for the full protein. As protein contains both hydrophobic and hydrophilic moieties, the extent of quench of conformational fluctuation with respect to that in pure water is almost half for the biopolymer complex (16.83%) than the same for pure hydrophobic polymer chain (32.43%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipoplex-type nanoaggregates prepared from pEGFP-C3 plasmid DNA (pDNA) and mixed liposomes, with a gemini cationic lipid (CL) 1,2-bis(hexadecyl imidazolium) alkanes], referred as (C(16)Im)(2)C-n (where C-n is the alkane spacer length, n = 2, 3, 5, or 12, between the imidazolium heads) and DOPE zwitterionic lipid, have been analyzed by zeta potential, gel electrophoresis, SAXS, cryo-TEM, fluorescence anisotropy, transfection efficiency, fluorescence confocal microscopy, and cell viability/cytotoxicity experiments to establish a structure-biological activity relationship. The study, carried out at several mixed liposome compositions, alpha, and effective charge ratios, rho(eff), of the lipoplex, demonstrates that the transfection of pDNA using CLs initially requires the determination of the effective charge of both. The electrochemical study confirms that CLs with a delocalizable positive charge in their headgroups yield an effective positive charge that is 90% of their expected nominal one, while pDNA is compacted yielding an effective negative charge which is only 10-25% than that of the linear DNA. SAXS diffractograms show that lipoplexes formed by CLs with shorter spacer (n = 2, 3, or 5) present three lamellar structures, two of them in coexistence, while those formed by CL with longest spacer (n = 12) present two additional inverted hexagonal structures. Cryo-TEM micrographs show nanoaggregates with two multilamellar structures, a cluster-type (at low alpha value) and a fingerprint-type, that coexist with the cluster-type at moderate alpha composition. The optimized transfection efficiency (TE) of pDNA, in HEK293T, HeLa, and H1299 cells was higher using lipoplexes containing gemini CLs with shorter spacers at low a value. Each lipid formulation did not show any significant levels of toxicity, the reported lipoplexes being adequate DNA vectors for gene therapy and considerably better than both Lipofectamine 2000 and CLs of the 1,2-bis(hexadecyl ammnoniun) alkane series, recently reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipoplex nano-aggregates have been analyzed through biophysical characterization (electrostatics, structure, size and morphology), and biological studies (transfection efficiency and cell viability) in five cancer cell lines. Lipoplexes were prepared from pEGFP-C3 plasmid DNA (pDNA) and mixed liposomes, constituted by a zwitterionic lipid (DOPE) and a gemini cationic lipid (GCL) synthesized in this work, bis(hexadecyl dimethyl ammonium) oxyethylene], referred to as (C16Am)(2)(C2O)(n), (where n is the oxyethylene spacer length, n = 1, 2 or 3, between the ammonium heads). Cryo-TEM micrographs show nano-aggregates with two multilamellar structures, a cluster-type (at low-to-medium GCL composition) and a fingerprint-type that coexists with the cluster-type at medium GCL composition and appears alone at high GCL composition. SAXS diffractograms show that these lipoplexes present three lamellar structures, two of them coexisting at low and high GCL composition. The optimized transfection efficiency (TE) of pDNA was higher for lipoplexes containing GCLs with a longer (n = 3) or shorter (n = 1) polyoxyethylene spacer, at high GCL composition (alpha - 0.7) with low charge ratio (rho(eff) 2). In the all cancer cell lines studied, the TE of the optimized formulations was much better than those of both lipofectamine 2000 and lipoplexes with GCLs of the bis(hexadecyl dimethyl ammonium) alkane series recently reported. Probably, (a) the coexistence of two lamellar structures at high GCL composition synergizes the TE of these lipid vectors, (b) the orientation of the polyoxyethylene region in (C16Am)(2)(C2O)(3)/DOPE may occur in such a way that the spacing between two cationic heads becomes smaller than that in (C16Am)(2)(C2O)(2)/DOPE which is poor in terms of TE, and (c) the synergistic interactions between serum proteins and (C16Am)(2)(C2O)(n)/DOPE-pDNA lipoplexes containing a polyoxyethylene spacer improve TE, especially at high GCL content. Lipoplexes studied here show very low levels of toxicity, which confirm them as improved vectors of pDNA in gene therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dialkyl succinates show a pattern of alternating behavior in their melting points, as the number of C atoms in the alkane side chain increases, unlike in the dialkyl oxalates Joseph et al. (2011). Acta Cryst. B67, 525-534]. Dialkyl succinates with odd numbers of C atoms in the alkyl side chain show higher melting points than the immediately adjacent analogues with even numbers. The crystal structures and their molecular packing have been analyzed for a series of dialkyl succinates with 1 - 4 C atoms in the alkyl side chain. The energy difference (Delta E) between the optimized and observed molecular conformations, density, Kitaigorodskii packing index (KPI) and C-H center dot center dot center dot O interactions are considered to rationalize this behavior. In contrast to the dialkyl oxalates where a larger number of moderately strong C-H center dot center dot center dot O interactions were characteristic of oxalates with elevated melting points, here the molecular packing and the density play a major role in raising the melting point. On moving from oxalate to succinate esters the introduction of the C2 spacer adds two activated H atoms to the asymmetric unit, resulting in the formation of stronger C-H center dot center dot center dot O hydrogen bonds in all succinates. As a result the crystallinity of long-chain alkyl substituted esters improves enormously in the presence of hydrogen bonds from activated donors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Itaconic acid is a bio-sourced dicarboxylic acid that carries a double bond; although several reports have dealt with the radical-initiated chain polymerization of dialkyl itaconates, only a few studies have utilized it as a di-acid monomer to prepare polyesters. In this study, we demonstrate that dibutyl itaconate can be melt-condensed with aliphatic diols to generate unsaturated polyesters; importantly, we show that the double bonds remain unaffected during the melt polymerization. A particularly useful attribute of these polyesters is that the exo-chain double bonds are conjugated to the ester carbonyl and, therefore, can serve as excellent Michael acceptors. A variety of organic thiols, such as alkane thiols, MPEG thiol, thioglycerol, derivatized cysteine etc., were shown to quantitatively Michael-add to the exo-chain double bonds and generate interesting functionalized polyesters. Similarly, organic amines, such as N-methyl-benzylamine, diallyl amine and proline, also add across the double bond; thus, these poly(alkylene itaconate)s could serve as potentially bio-benign polyesters that could be quantitatively transformed into a variety of interesting and potentially useful functionalized polymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant-pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A computational study of the interaction half-sandwich metal fragments (metal=Re/W, electron count=d(6)), containing linear nitrosyl (NO+), carbon monoxide (CO), trifluorophosphine (PF3), N-heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta-GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO+. Electron-withdrawing ligands like NO+ lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. (C) 2015 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon-chalcogen atombond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the pi-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.