39 resultados para Multiple-scale processing
Resumo:
In this letter, we propose a method for blind separation of d co-channel BPSK signals arriving at an antenna array. Our method involves two steps. In the first step, the received data vectors at the output of the array is grouped into 2d clusters. In the second step, we assign the 2d d-tuples with ±1 elements to these clusters in a consistent fashion. From the knowledge of the cluster to which a data vector belongs, we estimate the bits transmitted at that instant. Computer simulations are used to study the performance of our method
Resumo:
The problem of estimating multiple Carrier Frequency Offsets (CFOs) in the uplink of MIMO-OFDM systems with Co-Channel (CC) and OFDMA based carrier allocation is considered. The tri-linear data model for generalized, multiuser OFDM system is formulated. Novel blind subspace based estimation of multiple CFOs in the case of arbitrary carrier allocation scheme in OFDMA systems and CC users in OFDM systems based on the Khatri-Rao product is proposed. The method works where the conventional subspace method fails. The performance of the proposed methods is compared with pilot based Least-Squares method.
Resumo:
In this paper we consider the problem of learning an n × n kernel matrix from m(1) similarity matrices under general convex loss. Past research have extensively studied the m = 1 case and have derived several algorithms which require sophisticated techniques like ACCP, SOCP, etc. The existing algorithms do not apply if one uses arbitrary losses and often can not handle m > 1 case. We present several provably convergent iterative algorithms, where each iteration requires either an SVM or a Multiple Kernel Learning (MKL) solver for m > 1 case. One of the major contributions of the paper is to extend the well knownMirror Descent(MD) framework to handle Cartesian product of psd matrices. This novel extension leads to an algorithm, called EMKL, which solves the problem in O(m2 log n 2) iterations; in each iteration one solves an MKL involving m kernels and m eigen-decomposition of n × n matrices. By suitably defining a restriction on the objective function, a faster version of EMKL is proposed, called REKL,which avoids the eigen-decomposition. An alternative to both EMKL and REKL is also suggested which requires only an SVMsolver. Experimental results on real world protein data set involving several similarity matrices illustrate the efficacy of the proposed algorithms.
Resumo:
This article deals with the axial wave propagation properties of a coupled nanorod system with consideration of small scale effects. The nonlocal elasticity theory has been incorporated into classical rod/bar model to capture unique features of the coupled nanorods under the umbrella of continuum mechanics theory. Nonlocal rod model is developed for coupled nanorods. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behavior of nanorods from those of macroscopic rods. Explicit expressions are derived for wavenumber, cut-off frequency and escape frequency of nanorods. The analysis shows that the wave characteristics of nanorods are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial or longitudinal wave mode, where no wave propagation occurs. This is manifested in the spectrum cures as the region, where the wavenumber tends to infinite or wave speed tends to zero. The effect of the coupled spring stiffness is also capture in the present analysis. It has been also shown that the cut-off frequency increases as the stiffness of the coupled spring increases and also the coupled spring stiffness has no effect on escape frequency of the axial wave mode in the nanorod. This cut-off frequency is also independent of the nonlocal small scale parameter. The present study may bring in helpful insights while investigating multiple-nanorod-system-models for future nano-optomechanical systems applications. The results can also provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of coupled single-walled carbon nanotubes or coupled nanorods. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We propose a randomized algorithm for large scale SVM learning which solves the problem by iterating over random subsets of the data. Crucial to the algorithm for scalability is the size of the subsets chosen. In the context of text classification we show that, by using ideas from random projections, a sample size of O(log n) can be used to obtain a solution which is close to the optimal with a high probability. Experiments done on synthetic and real life data sets demonstrate that the algorithm scales up SVM learners, without loss in accuracy. 1
Resumo:
How the brain maintains perceptual continuity across eye movements that yield discontinuous snapshots of the world is still poorly understood. In this study, we adapted a framework from the dual-task paradigm, well suited to reveal bottlenecks in mental processing, to study how information is processed across sequential saccades. The pattern of RTs allowed us to distinguish among three forms of trans-saccadic processing (no trans-saccadic processing, trans-saccadic visual processing and trans-saccadic visual processing and saccade planning models). Using a cued double-step saccade task, we show that even though saccade execution is a processing bottleneck, limiting access to incoming visual information, partial visual and motor processing that occur prior to saccade execution is used to guide the next eye movement. These results provide insights into how the oculomotor system is designed to process information across multiple fixations that occur during natural scanning.
Resumo:
In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.
Resumo:
Critical applications like cyclone tracking and earthquake modeling require simultaneous high-performance simulations and online visualization for timely analysis. Faster simulations and simultaneous visualization enable scientists provide real-time guidance to decision makers. In this work, we have developed an integrated user-driven and automated steering framework that simultaneously performs numerical simulations and efficient online remote visualization of critical weather applications in resource-constrained environments. It considers application dynamics like the criticality of the application and resource dynamics like the storage space, network bandwidth and available number of processors to adapt various application and resource parameters like simulation resolution, simulation rate and the frequency of visualization. We formulate the problem of finding an optimal set of simulation parameters as a linear programming problem. This leads to 30% higher simulation rate and 25-50% lesser storage consumption than a naive greedy approach. The framework also provides the user control over various application parameters like region of interest and simulation resolution. We have also devised an adaptive algorithm to reduce the lag between the simulation and visualization times. Using experiments with different network bandwidths, we find that our adaptive algorithm is able to reduce lag as well as visualize the most representative frames.
Resumo:
The objectives of this paper are to study the effects of plastic anisotropy and evolution in crystallographic texture with deformation on the ductile fracture behaviour of polycrystalline solids. To this end, numerical simulations of multiple void growth and interaction ahead of a notch tip are performed under mode I, plane strain, small scale yielding conditions using two approaches. The first approach is based on the Hill yield theory, while the second employs crystal plasticity constitutive equations and a Taylor-type homogenization in order to represent the ductile polycrystalline solid. The initial textures pertaining to continuous cast Al-Mg AA5754 sheets in recrystallized and cold rolled conditions are considered. The former is nearly-isotropic, while the latter displays pronounced anisotropy. The results indicate distinct changes in texture in the ligaments bridging the voids ahead of the notch tip with increase in load level which gives rise to retardation in porosity evolution and increase in tearing resistance for both materials.
Resumo:
In the current study, the evolution of microstructure and texture has been studied for Ti-6Al-4V-0.1B alloy during sub-transus thermomechanical processing. This part of the work deals with the deformation response of the alloy by rolling in the (alpha + beta) phase field. The (alpha + beta) annealing behavior of the rolled specimen is communicated in part II. Rolled microstructures of the alloys exhibit either kinked or straight alpha colonies depending on their orientations with respect to the principal rolling directions. The Ti-6Al-4V-0.1B alloy shows an improved rolling response compared with the alloy Ti-6Al-4V because of smaller alpha lamellae size, coherency of alpha/beta interfaces, and multiple slip due to orientation factors. Accelerated dynamic globularization for this alloy is similarly caused by the intralamellar transverse boundary formation via multiple slip and strain accumulation at TiB particles. The (0002)(alpha) pole figures of rolled Ti-6Al-4V alloy shows ``TD splitting'' at lower rolling temperatures because of strong initial texture. Substantial beta phase mitigates the effect of starting texture at higher temperature so that ``RD splitting'' characterizes the basal pole figure. Weak starting texture and easy slip transfer for Ti-6Al-4V-0.1B alloy produce simultaneous TD and RD splittings in basal pole figures at all rolling temperatures.
Resumo:
The first part of this study describes the evolution of microstructure and texture in Ti-6Al-4V-0.1B alloy during sub-transus rolling vis-A -vis the control alloy Ti-6Al-4V. In the second part, the static annealing response of the two alloys at self-same conditions is compared and the principal micromechanisms are analyzed. Faster globularization kinetics has been observed in the Ti-6Al-4V-0.1B alloy for equivalent annealing conditions. This is primarily attributed to the alpha colonies, which leads to easy boundary splitting via multiple slip activation in this alloy. The other mechanisms facilitating lamellar to equiaxed morphological transformations, e.g., termination migration and cylinderization, also start early in the boron-modified alloy due to small alpha colony size, small aspect ratio of the alpha lamellae, and the presence of TiB particles in the microstructure. Both the alloys exhibit weakening of basal fiber (ND||aOE (c) 0001 >) and strengthening of prism fiber (RD||aOE (c) aOE(a)) upon annealing. A close proximity between the orientations of fully globularized primary alpha and secondary alpha phases during alpha -> beta -> alpha transformation has accounted for such a texture modification.
Resumo:
In this paper, we evaluate secrecy rates in cooperative relay beamforming in the presence of imperfect channel state information (CSI) and multiple eavesdroppers. A source-destination pair aided by.. out of.. relays, 1 <= k <= M, using decode-and-forward relay beamforming is considered. We compute the worst case secrecy rate with imperfect CSI in the presence of multiple eavesdroppers, where the number of eavesdroppers can be more than the number of relays. We solve the optimization problem for all possible relay combinations to find the secrecy rate and optimum source and relay weights subject to a total power constraint. We relax the rank-1 constraint on the complex semi-definite relay weight matrix and use S-procedure to reformulate the optimization problem that can be solved using convex semi-definite programming.
Resumo:
In this paper, we propose low-complexity algorithms based on Monte Carlo sampling for signal detection and channel estimation on the uplink in large-scale multiuser multiple-input-multiple-output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and a similar number of uplink users. A BS receiver that employs a novel mixed sampling technique (which makes a probabilistic choice between Gibbs sampling and random uniform sampling in each coordinate update) for detection and a Gibbs-sampling-based method for channel estimation is proposed. The algorithm proposed for detection alleviates the stalling problem encountered at high signal-to-noise ratios (SNRs) in conventional Gibbs-sampling-based detection and achieves near-optimal performance in large systems with M-ary quadrature amplitude modulation (M-QAM). A novel ingredient in the detection algorithm that is responsible for achieving near-optimal performance at low complexity is the joint use of a mixed Gibbs sampling (MGS) strategy coupled with a multiple restart (MR) strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for a large number of BS antennas and users (e. g., 64 and 128 BS antennas and users). The proposed Gibbs-sampling-based channel estimation algorithm refines an initial estimate of the channel obtained during the pilot phase through iterations with the proposed MGS-based detection during the data phase. In time-division duplex systems where channel reciprocity holds, these channel estimates can be used for multiuser MIMO precoding on the downlink. The proposed receiver is shown to achieve good performance and scale well for large dimensions.
Resumo:
In this paper, we propose a low-complexity algorithm based on Markov chain Monte Carlo (MCMC) technique for signal detection on the uplink in large scale multiuser multiple input multiple output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and similar number of uplink users. The algorithm employs a randomized sampling method (which makes a probabilistic choice between Gibbs sampling and random sampling in each iteration) for detection. The proposed algorithm alleviates the stalling problem encountered at high SNRs in conventional MCMC algorithm and achieves near-optimal performance in large systems with M-QAM. A novel ingredient in the algorithm that is responsible for achieving near-optimal performance at low complexities is the joint use of a randomized MCMC (R-MCMC) strategy coupled with a multiple restart strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for large number of BS antennas and users (e.g., 64, 128, 256 BS antennas/users).
Resumo:
Background: The set of indispensable genes that are required by an organism to grow and sustain life are termed as essential genes. There is a strong interest in identification of the set of essential genes, particularly in pathogens, not only for a better understanding of the pathogen biology, but also for identifying drug targets and the minimal gene set for the organism. Essentiality is inherently a systems property and requires consideration of the system as a whole for their identification. The available experimental approaches capture some aspects but each method comes with its own limitations. Moreover, they do not explain the basis for essentiality in most cases. A powerful prediction method to recognize this gene pool including rationalization of the known essential genes in a given organism would be very useful. Here we describe a multi-level multi-scale approach to identify the essential gene pool in a deadly pathogen, Mycobacterium tuberculosis. Results: The multi-level workflow analyses the bacterial cell by studying (a) genome-wide gene expression profiles to identify the set of genes which show consistent and significant levels of expression in multiple samples of the same condition, (b) indispensability for growth by using gene expression integrated flux balance analysis of a genome-scale metabolic model, (c) importance for maintaining the integrity and flow in a protein-protein interaction network and (d) evolutionary conservation in a set of genomes of the same ecological niche. In the gene pool identified, the functional basis for essentiality has been addressed by studying residue level conservation and the sub-structure at the ligand binding pockets, from which essential amino acid residues in that pocket have also been identified. 283 genes were identified as essential genes with high-confidence. An agreement of about 73.5% is observed with that obtained from the experimental transposon mutagenesis technique. A large proportion of the identified genes belong to the class of intermediary metabolism and respiration. Conclusions: The multi-scale, multi-level approach described can be generally applied to other pathogens as well. The essential gene pool identified form a basis for designing experiments to probe their finer functional roles and also serve as a ready shortlist for identifying drug targets.