62 resultados para Multi-resolution techniques
Resumo:
Fusion of multi-sensor imaging data enables a synergetic interpretation of complementary information obtained by sensors of different spectral ranges. Multi-sensor data of diverse spectral, spatial and temporal resolutions require advanced numerical techniques for analysis and interpretation. This paper reviews ten advanced pixel based image fusion techniques – Component substitution (COS), Local mean and variance matching, Modified IHS (Intensity Hue Saturation), Fast Fourier Transformed-enhanced IHS, Laplacian Pyramid, Local regression, Smoothing filter (SF), Sparkle, SVHC and Synthetic Variable Ratio. The above techniques were tested on IKONOS data (Panchromatic band at 1 m spatial resolution and Multispectral 4 bands at 4 m spatial resolution). Evaluation of the fused results through various accuracy measures, revealed that SF and COS methods produce images closest to corresponding multi-sensor would observe at the highest resolution level (1 m).
Resumo:
High performance video standards use prediction techniques to achieve high picture quality at low bit rates. The type of prediction decides the bit rates and the image quality. Intra Prediction achieves high video quality with significant reduction in bit rate. This paper presents novel area optimized architecture for Intra prediction of H.264 decoding at HDTV resolution. The architecture has been validated on a Xilinx Virtex-5 FPGA based platform and achieved a frame rate of 64 fps. The architecture is based on multi-level memory hierarchy to reduce latency and ensure optimum resources utilization. It removes redundancy by reusing same functional blocks across different modes. The proposed architecture uses only 13% of the total LUTs available on the Xilinx FPGA XC5VLX50T.
Resumo:
In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.
Resumo:
A comparison is made of the performance of a weather Doppler radar with a staggered pulse repetition time and a radar with a random (but known) phase. As a standard for this comparison, the specifications of the forthcoming next generation weather radar (NEXRAD) are used. A statistical analysis of the spectral momentestimates for the staggered scheme is developed, and a theoretical expression for the signal-to-noise ratio due to recohering-filteringrecohering for the random phase radar is obtained. Algorithms for assignment of correct ranges to pertinent spectral moments for both techniques are presented.
Resumo:
In this paper, we propose an extension to the I/O device architecture, as recommended in the PCI-SIG IOV specification, for virtualizing network I/O devices. The aim is to enable fine-grained controls to a virtual machine on the I/O path of a shared device. The architecture allows native access of I/O devices to virtual machines and provides device level QoS hooks for controlling VM specific device usage. For evaluating the architecture we use layered queuing network (LQN) models. We implement the architecture and evaluate it using simulation techniques, on the LQN model, to demonstrate the benefits. With the architecture, the benefit for network I/O is 60% more than what can be expected on the existing architecture. Also, the proposed architecture improves scalability in terms of the number of virtual machines intending to share the I/O device.
Resumo:
Sesbania mosaic virus (SMV) is an isometric, ss-RNA plant virus found infecting Sesbania grandiflora plants in fields near Tirupathi, South India. The virus particles, which sediment at 116 S at pH 5.5, swell upon treatment with EDTA at pH 7.5 resulting in the reduction of the sedimentation coefficient to 108 S. SMV coat protein amino acid sequence was determined and found to have approximately 60% amino acid sequence identity with that of southern bean mosaic virus (SBMV). The amino terminal 60 residue segment, which contains a number of positively charged residues, is less well conserved between SMV and SBMV when compared to the rest of the sequence. The 3D structure of SMV was determined at 3.0 Å resolution by molecular replacement techniques using SBMV structure as the initial phasing model. The icosahedral asymmetric unit was found to contain four calcium ions occurring in inter subunit interfaces and three protein subunits, designated A, B and C. The conformation of the C subunit appears to be different from those of A and B in several segments of the polypeptide. These observations coupled with structural studies on SMV partially depleted of calcium suggest a plausible mechanisms for the initiation of the disassembly of the virus capsid.
Resumo:
The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.
Resumo:
Background: The number of available structures of large multi-protein assemblies is quite small. Such structures provide phenomenal insights on the organization, mechanism of formation and functional properties of the assembly. Hence detailed analysis of such structures is highly rewarding. However, the common problem in such analyses is the low resolution of these structures. In the recent times a number of attempts that combine low resolution cryo-EM data with higher resolution structures determined using X-ray analysis or NMR or generated using comparative modeling have been reported. Even in such attempts the best result one arrives at is the very course idea about the assembly structure in terms of trace of the C alpha atoms which are modeled with modest accuracy. Methodology/Principal Findings: In this paper first we present an objective approach to identify potentially solvent exposed and buried residues solely from the position of C alpha atoms and amino acid sequence using residue type-dependent thresholds for accessible surface areas of C alpha. We extend the method further to recognize potential protein-protein interface residues. Conclusion/Significance: Our approach to identify buried and exposed residues solely from the positions of C alpha atoms resulted in an accuracy of 84%, sensitivity of 83-89% and specificity of 67-94% while recognition of interfacial residues corresponded to an accuracy of 94%, sensitivity of 70-96% and specificity of 58-94%. Interestingly, detailed analysis of cases of mismatch between recognition of interface residues from C alpha positions and all-atom models suggested that, recognition of interfacial residues using C alpha atoms only correspond better with intuitive notion of what is an interfacial residue. Our method should be useful in the objective analysis of structures of protein assemblies when positions of only C alpha positions are available as, for example, in the cases of integration of cryo-EM data and high resolution structures of the components of the assembly.
Resumo:
Run-time interoperability between different applications based on H.264/AVC is an emerging need in networked infotainment, where media delivery must match the desired resolution and quality of the end terminals. In this paper, we describe the architecture and design of a polymorphic ASIC to support this. The H.264 decoding flow is partitioned into modules, such that the polymorphic ASIC meets the design goals of low-power, low-area, high flexibility, high throughput and fast interoperability between different profiles and levels of H.264. We demonstrate the idea with a multi-mode decoder that can decode baseline, main and high profile H.264 streams and can interoperate at run.time across these profiles. The decoder is capable of processing frame sizes of up to 1024 times 768 at 30 fps. The design synthesized with UMC 0.13 mum technology, occupies 250 k gates and runs at 100 MHz.
Resumo:
Joint decoding of multiple speech patterns so as to improve speech recognition performance is important, especially in the presence of noise. In this paper, we propose a Multi-Pattern Viterbi algorithm (MPVA) to jointly decode and recognize multiple speech patterns for automatic speech recognition (ASR). The MPVA is a generalization of the Viterbi Algorithm to jointly decode multiple patterns given a Hidden Markov Model (HMM). Unlike the previously proposed two stage Constrained Multi-Pattern Viterbi Algorithm (CMPVA),the MPVA is a single stage algorithm. MPVA has the advantage that it cart be extended to connected word recognition (CWR) and continuous speech recognition (CSR) problems. MPVA is shown to provide better speech recognition performance than the earlier techniques: using only two repetitions of noisy speech patterns (-5 dB SNR, 10% burst noise), the word error rate using MPVA decreased by 28.5%, when compared to using individual decoding. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A thermodynamic study of the Ti-O system at 1573 K has been conducted using a combination of thermogravimetric and emf techniques. The results indicate that the variation of oxygen potential with the nonstoichiometric parameter delta in stability domain of TiO2-delta with rutile structure can be represented by the relation, Delta mu o(2) = -6RT In delta - 711970(+/-1600) J/mol. The corresponding relation between non-stoichiometric parameter delta and partial pressure of oxygen across the whole stability range of TiO2-delta at 1573 K is delta proportional to P-O2(-1/6). It is therefore evident that the oxygen deficient behavior of nonstoichiometric TiO2-delta is dominated by the presence of doubly charged oxygen vacancies and free electrons. The high-precision measurements enabled the resolution of oxygen potential steps corresponding to the different Magneli phases (Ti-n O2n-1) up to n = 15. Beyond this value of n, the oxygen potential steps were too small to be resolved. Based on composition of the Magneli phase in equilibrium with TiO2-delta, the maximum value of n is estimated to be 28. The chemical potential of titanium was derived as a function of composition using the Gibbs-Duhem relation. Gibbs energies of formation of the Magneli phases were derived from the chemical potentials of oxygen and titanium. The values of -2441.8(+/-5.8) kJ/mol for Ti4O7 and -1775.4(+/-4.3) kJ/mol for Ti3O5 Obtained in this study refine values of -2436.2(+/-26.1) kJ/mol and-1771.3(+/-6.9) kJ/mol, respectively, given in the JANAF thermochemical tables.
Resumo:
In this paper, we present a generic method/model for multi-objective design optimization of laminated composite components, based on Vector Evaluated Artificial Bee Colony (VEABC) algorithm. VEABC is a parallel vector evaluated type, swarm intelligence multi-objective variant of the Artificial Bee Colony algorithm (ABC). In the current work a modified version of VEABC algorithm for discrete variables has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria: failure mechanism based failure criteria, maximum stress failure criteria and the tsai-wu failure criteria. The optimization method is validated for a number of different loading configurations-uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Finally the performance is evaluated in comparison with other nature inspired techniques which includes Particle Swarm Optimization (PSO), Artificial Immune System (AIS) and Genetic Algorithm (GA). The performance of ABC is at par with that of PSO, AIS and GA for all the loading configurations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Context. Polar corona is often explored to find the energy source for the acceleration of the fast solar wind. Earlier observations show omni-presence of quasi-periodic disturbances, traveling outward, which is believed to be caused by the ubiquitous presence of outward propagating waves. These waves, mostly of compressional type, might provide the additional momentum and heat required for the fast solar wind acceleration. It has been conjectured that these disturbances are not due to waves but high speed plasma outflows, which are difficult to distinguish using the current available techniques. Aims. With the unprecedented high spatial and temporal resolution of AIA/SDO, we search for these quasi-periodic disturbances in both plume and interplume regions of the polar corona. We investigate their nature of propagation and search for a plausible interpretation. We also aim to study their multi-thermal nature by using three different coronal passbands of AIA. Methods. We chose several clean plume and interplume structures and studied the time evolution of specific channels by making artificial slits along them. Taking the average across the slits, space-time maps are constructed and then filtration techniques are applied to amplify the low-amplitude oscillations. To suppress the effect of fainter jets, we chose wider slits than usual. Results. In almost all the locations chosen, in both plume and interplume regions we find the presence of propagating quasi-periodic disturbances, of periodicities ranging from 10-30 min. These are clearly seen in two channels and in a few cases out to very large distances (approximate to 250 `') off-limb, almost to the edge of the AIA field of view. The propagation speeds are in the range of 100-170 km s(-1). The average speeds are different for different passbands and higher in interplume regions. Conclusions. Propagating disturbances are observed, even after removing the effects of jets and are insensitive to changes in slit width. This indicates that a coherent mechanism is involved. In addition, the observed propagation speed varies between the different passpands, implying that these quasi-periodic intensity disturbances are possibly due to magneto-acoustic waves. The propagation speeds in interplume region are higher than in the plume region.
Resumo:
The structure and chemical environment of Cu in Cu/CeO2 catalysts synthesized by the solution combustion method have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR) spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and extended X-ray fine structure (EXAFS) spectroscopy. High-resolution XRD studies of 3 and 5 atom % Cu/CeO2 do not show CuO lines in their respective patterns. The structure could be refined for the composition Ce1-xCuxO2-delta (x = 0.03 and 0.05; delta similar to 0.13 and 0.16) in the fluorite structure with 5-8% oxide ion vacancy. High-resolution TEM did not show CuO particles in 5 atom % Cu/CeO2. EPR as well as XPS studies confirm the presence of Cu2+ species in the CeO2 matrix. Redox potentials of Cu species in the CeO2 matrix are lower than those in CuO. EXAFS investigations of these catalysts show an average coordination number of 3 around the Cu2+ ion in the first shell at a distance of 1.96 Angstrom, indicating the O2- ion vacancy around the Cu2+ ion. The Cu-O bond length also decreases compared to that in CuO. The second and third shell around the Cu2+ ion in the catalysts are attributed to -Cu2+-O2--Cu2+ - at 2.92 Angstrom and -Cu2+-O2--Ce4+- at the distance of 3.15 Angstrom, respectively. The present results provide direct evidence for the formation of a Ce1-xCuxO2-delta type of solid solution phase having -square-Cu2+-O-Ce4+- kind of linkages.
Resumo:
Over the last few decades, there has been a significant land cover (LC) change across the globe due to the increasing demand of the burgeoning population and urban sprawl. In order to take account of the change, there is a need for accurate and up- to-date LC maps. Mapping and monitoring of LC in India is being carried out at national level using multi-temporal IRS AWiFS data. Multispectral data such as IKONOS, Landsat- TM/ETM+, IRS-1C/D LISS-III/IV, AWiFS and SPOT-5, etc. have adequate spatial resolution (~ 1m to 56m) for LC mapping to generate 1:50,000 maps. However, for developing countries and those with large geographical extent, seasonal LC mapping is prohibitive with data from commercial sensors of limited spatial coverage. Superspectral data from the MODIS sensor are freely available, have better temporal (8 day composites) and spectral information. MODIS pixels typically contain a mixture of various LC types (due to coarse spatial resolution of 250, 500 and 1000 m), especially in more fragmented landscapes. In this context, linear spectral unmixing would be useful for mapping patchy land covers, such as those that characterise much of the Indian subcontinent. This work evaluates the existing unmixing technique for LC mapping using MODIS data, using end- members that are extracted through Pixel Purity Index (PPI), Scatter plot and N-dimensional visualisation. The abundance maps were generated for agriculture, built up, forest, plantations, waste land/others and water bodies. The assessment of the results using ground truth and a LISS-III classified map shows 86% overall accuracy, suggesting the potential for broad-scale applicability of the technique with superspectral data for natural resource planning and inventory applications.