75 resultados para Multi Domain Information Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extending the previous work of Lan et al. J. Chem. Phys., 122, 224315 (2005)], a multi-state potential model for the H atom photodissociation is presented. All three ``disappearing coordinates'' of the departing H atom have been considered. Ab initio CASSCF computations have been carried out for the linear COH geometry of C-2v symmetry, and for several COH angles with the OH group in the ring plane and also perpendicular to the ring plane. By keeping the C6H5O fragment frozen in a C-2v-constrained geometry throughout, we have been able to apply symmetry-based simplifications in the constructions of a diabatic model. This model is able to capture the overall trends of twelve adiabats at both torsional limits for a wide range of COH bend angles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-dimensional coupled multi-physics based model has been developed to accurately compute the effects of electrostatic, mechanical, and thermal field interactions on the electronic energy band structure in group III-nitrides thin film heterostructures. Earlier models reported in published literature assumes electro-mechanical field with uniform temperature thus neglecting self-heating. Also, the effects of diffused interface on the energy band structure were not studied. We include these effects in a self-consistent manner wherein the transport equation is introduced along with the electro-mechanical models, and the lattice structural variation as observed in experiments are introduced at the interface. Due to these effects, the electrostatic potential distribution in the heterostructure is altered. The electron and hole ground state energies decrease by 5% and 9%, respectively, at a relative temperature of 700 K, when compared with the results obtained from the previously reported electro-mechanical model assuming constant and uniform temperature distribution. A diffused interface decreases the ground state energy of electrons and holes by about 11% and 9%, respectively, at a relative temperature of 700 K when compared with the predictions based on uniform temperature based electro-mechanical model. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetic theory of fluid turbulence modeling developed by Degond and Lemou in 7] is considered for further study, analysis and simulation. Starting with the Boltzmann like equation representation for turbulence modeling, a relaxation type collision term is introduced for isotropic turbulence. In order to describe some important turbulence phenomenology, the relaxation time incorporates a dependency on the turbulent microscopic energy and this makes difficult the construction of efficient numerical methods. To investigate this problem, we focus here on a multi-dimensional prototype model and first propose an appropriate change of frame that makes the numerical study simpler. Then, a numerical strategy to tackle the stiff relaxation source term is introduced in the spirit of Asymptotic Preserving Schemes. Numerical tests are performed in a one-dimensional framework on the basis of the developed strategy to confirm its efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Protein kinases are involved in diverse spectrum of cellular processes. Availability of draft version of the human genomic data in the year 2001 enabled recognition of repertoire of protein kinases. However, over the years the human genomic data is being refined and the current release of human genomic data has helped us to recognize a larger repertoire of over 900 human protein kinases represented mainly by splice variants. Results: Many of these identified protein kinases are alternatively spliced products. Interestingly, some of the human kinase splice variants appear to be significantly diverged in terms of their functional properties as represented by incorporation or absence of one or more domains. Many sets of protein kinase splice variants have substantially different domain organization and in a few sets of splice variants kinase domains belong to different subfamilies of kinases suggesting potential participation in different signal transduction pathways. Conclusions: Addition or deletion of a domain between splice variants of multi-domain kinases appears to be a means of generating differences in the functional features of otherwise similar kinases. It is intriguing that marked sequence diversity within the catalytic regions of some of the splice variant kinases result in kinases belonging to different subfamilies. These human kinase splice variants with different functions might contribute to diversity of eukaryotic cellular signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cricket is one of most popular games in the Asian subcontinent and its popularity is increasing every day. The issue of replacement of the cricket ball amidst the matches is always an uncomfortable situation for teams, umpires and even supporters. At present the basis of the replacement is solely on the judgement, experience and expertise of the umpires, which is subjective, controversial and debatable. In this paper, we have attempted a new approach to quantify the number of impacts or impact factor of a 4-piece leather ball used in the Intemational one-day and test cricket matches. This gives a more objective and scientific basis/ criteria for the replacement of the ball. Here, we have used a well known and widely used Thermal Infra-Red (TIR) imaging to capture the dynamics of the thermal profice of the cricket ball, which has been heated for about 15 seconds. The idea behind this approach is the simple observation that an old ball (ball with a few impacts) has different thermal signature/profice compared to the that of a new ball. This could be due to the change in the surface profice and internal structure, minor de-shaping, opening of seam etc. The TIR video and its frames, which is inherently noisy, are restored using Hebbian learning based FIR (sic), which performs optimal smoothing in relatively less number of iteration. We have focussed on the hottest region of the ball i.e., the inner core and tracked its thermal profice dynamics. Finally we have used multi layer perceptron model (MLP) to quantify the impact factor with fairly good accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even research models of helicopter dynamics often lead to a large number of equations of motion with periodic coefficients; and Floquet theory is a widely used mathematical tool for dynamic analysis. Presently, three approaches are used in generating the equations of motion. These are (1) general-purpose symbolic processors such as REDUCE and MACSYMA, (2) a special-purpose symbolic processor, DEHIM (Dynamic Equations for Helicopter Interpretive Models), and (3) completely numerical approaches. In this paper, comparative aspects of the first two purely algebraic approaches are studied by applying REDUCE and DEHIM to the same set of problems. These problems range from a linear model with one degree of freedom to a mildly non-linear multi-bladed rotor model with several degrees of freedom. Further, computational issues in applying Floquet theory are also studied, which refer to (1) the equilibrium solution for periodic forced response together with the transition matrix for perturbations about that response and (2) a small number of eigenvalues and eigenvectors of the unsymmetric transition matrix. The study showed the following: (1) compared to REDUCE, DEHIM is far more portable and economical, but it is also less user-friendly, particularly during learning phases; (2) the problems of finding the periodic response and eigenvalues are well conditioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of the similar to 4000 ORFs identified through the genome sequence of Mycobacterium tuberculosis (TB) H37Rv, experimentally determined structures are available for 312. Since knowledge of protein structures is essential to obtain a high-resolution understanding of the underlying biology, we seek to obtain a structural annotation for the genome, using computational methods. Structural models were obtained and validated for similar to 2877 ORFs, covering similar to 70% of the genome. Functional annotation of each protein was based on fold-based functional assignments and a novel binding site based ligand association. New algorithms for binding site detection and genome scale binding site comparison at the structural level, recently reported from the laboratory, were utilized. Besides these, the annotation covers detection of various sequence and sub-structural motifs and quaternary structure predictions based on the corresponding templates. The study provides an opportunity to obtain a global perspective of the fold distribution in the genome. The annotation indicates that cellular metabolism can be achieved with only 219 folds. New insights about the folds that predominate in the genome, as well as the fold-combinations that make up multi-domain proteins are also obtained. 1728 binding pockets have been associated with ligands through binding site identification and sub-structure similarity analyses. The resource (http://proline.physics.iisc.ernet.in/Tbstructuralannotation), being one of the first to be based on structure-derived functional annotations at a genome scale, is expected to be useful for better understanding of TB and for application in drug discovery. The reported annotation pipeline is fairly generic and can be applied to other genomes as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative levels of different sigma factors dictate the expression profile of a bacterium. Extracytoplasmic function sigma factors synchronize the transcriptional profile with environmental conditions. The cellular concentration of free extracytoplasmic function sigma factors is regulated by the localization of this protein in a sigma/anti-sigma complex. Anti-sigma factors are multi-domain proteins with a receptor to sense environmental stimuli and a conserved anti-sigma domain (ASD) that binds a sigma factor. Here we describe the structure of Mycobacterium tuberculosis anti-sigma(D) (RsdA) in complex with the -35 promoter binding domain of sigma(D) (sigma(D)(4)). We note distinct conformational features that enable the release of sigma(D) by the selective proteolysis of the ASD in RsdA. The structural and biochemical features of the sigma(D)/RsdA complex provide a basis to reconcile diverse regulatory mechanisms that govern sigma/anti-sigma interactions despite high overall structural similarity. Multiple regulatory mechanisms embedded in an ASD scaffold thus provide an elegant route to rapidly re-engineer the expression profile of a bacterium in response to an environmental stimulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wobble instability is one of the major problems of a three-wheeled vehicle commonly used in India, and these instabilities are of great interest to industry and academia. In this paper, we studied this instability using a multi-body dynamic model and with experiments conducted on a prototype three-wheeled vehicle on a test track. The multi-body dynamic model of a three-wheeled vehicle is developed using the commercial software ADAMS/Car. In an initial model, all components including main structures such as the frame, the steering column and the rear forks are assumed to be rigid bodies. A linear eigenvalue analysis, which is carried out at different speeds, reveals a mode that has predominantly a steering oscillation, also called a wobble mode, with a frequency of around 5-6Hz. The analysis results shows that the damping of this mode is low but positive up to the maximum speed of the three-wheeled vehicle. However, the experimental study shows that the mode is unstable at speeds below 8.33m/s. To predict and study this instability in detail, a more refined model of the three-wheeled vehicle, with flexibilities of three important bodies, was constructed in ADAMS/Car. With flexible bodies, three modes of a steering oscillation were observed. Two of these are well damped and the other is lightly damped with negative damping at lower speeds. Simulation results with flexibility incorporated show a good match with the instability observed in the experimental studies. Further, we investigated the effect of each flexible body and found that the flexibility of the steering column is the major contributor for wobble instability and is similar to the wheel shimmy problem in aircraft.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural, magnetic and dielectric properties of nano zinc ferrite prepared by the propellant chemistry technique are studied. The PXRD measurement at room temperature reveal that the compound is in cubic spinel phase, belong to the space group Fd (3) over barm. The unit cell parameters have been estimated from Rietveld refinement. The calculated force constants from FTIR spectrum corresponding to octahedral and tetrahedral sites at 375 and 542 cm(-1) are 6.61 x 10(2) and 3.77 x 10(2) N m(-1) respectively; these values are slightly higher compared to the other ferrite systems. Magnetic hysteresis and EPR spectra show superparamagnetic property nearly to room temperature due to comparison values between magnetic anisotropy energy and the thermal energy. The calculated values of saturation magnetization, remenant magnetization, coercive field and magnetic moment supports for the existence of multi domain particles in the sample. The temperature dependent magnetic field shows the spin freezing state at 30 K and the blocking temperature at above room temperature. The frequency dependent dielectric interactions show the variation of dielectric constant, dielectric loss and impedance as similar to other ferrite systems. The AC conductivity in the prepared sample is due to the presence of electrons, holes and polarons. The synthesized material is suitable for nano-electronics and biomedical applications. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt ferrite (CoFe2O4) is an engineering material which is used for applications such as magnetic cores, magnetic switches, hyperthermia based tumor treatment, and as contrast agents for magnetic resonance imaging. Utility of ferrites nanoparticles hinges on its size, dispersibility in solutions, and synthetic control over its coercivity. In this work, we establish correlations between room temperature co-precipitation conditions, and these crucial materials parameters. Furthermore, post-synthesis annealing conditions are correlated with morphology, changes in crystal structure and magnetic properties. We disclose the synthesis and process conditions helpful in obtaining easily sinterable CoFe2O4 nanoparticles with coercive magnetic flux density (H-c) in the range 5.5-31.9 kA/m and M-s in the range 47.9-84.9 A.m(2)Kg(-1). At a grain size of similar to 54 +/- 2 nm (corresponding to 1073 K sintering temperature), multi-domain behavior sets in, which is indicated by a decrease in H-c. In addition, we observe an increase in lattice constant with respect to grain size, which is the inverse of what is expected of in ferrites. Our results suggest that oxygen deficiency plays a crucial role in explaining this inverse trend. We expect the method disclosed here to be a viable and scalable alternative to thermal decomposition based CoFe2O4 synthesis. The magnetic trends reported will aid in the optimization of functional CoFe2O4 nanoparticles

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A new automata model Mr,k, with a conceptually significant innovation in the form of multi-state alternatives at each instance, is proposed in this study. Computer simulations of the Mr,k, model in the context of feature selection in an unsupervised environment has demonstrated the superiority of the model over similar models without this multi-state-choice innovation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper we develop a Linear Programming (LP) based decentralized algorithm for a group of multiple autonomous agents to achieve positional consensus. Each agent is capable of exchanging information about its position and orientation with other agents within their sensing region. The method is computationally feasible and easy to implement. Analytical results are presented. The effectiveness of the approach is illustrated with simulation results.