57 resultados para Meyer–Konig and Zeller Operators


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unary operators are functions of a single variable. Realization of quaternary unary operators (QUOs) using quaternary multiplexer (QMUX) is presented in this paper. QUOs are divided into eight groups on the basis of the number of change overs in the output for an input sequence of 0, 1, 2, 3. This grouping reduces the hardware required to realize them. QMUX with two, three, and four input lines are proposed for the realization of QUOs belonging to the eight groups. A systematic procedure for the selection of QMUX and the implementation of the QUOs are given. The QMUXs are designed using CMOS ICs. The hardware required for their implementation is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some continuity and differentiability properties of the eigenvalues and eigenfunctions of finite section normal integral operators are proved. These are the extension of corresponding results for symmetric operators ([4.], 554–566; K. B. Athreya and R. Vittal Rao, to appear; [10.], 463–471.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kac-Akhiezer formula for finite section normal Wiener-Hopf integral operators is proved. This is an extension of the corresponding result for symmetric operator [2, 3, 4, 5, 6, 7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The positivity of operators in Hilbert spaces is an important concept finding wide application in various branches of Mathematical System Theory. A frequency- domain condition that ensures the positivity of time-varying operators in L2 with a state-space description, is derived in this paper by using certain newly developed inequalities concerning the input-state relation of such operators. As an interesting application of these results, an L2 stability criterion for time-varying feedback systems consisting of a finite-sector non-linearity is also developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For an operator T in the class B-n(), introduced by Cowen and Douglas, the simultaneous unitary equivalence class of the curvature and the covariant derivatives up to a certain order of the corresponding bundle E-T determine the unitary equivalence class of the operator T. In a subsequent paper, the authors ask if the simultaneous unitary equivalence class of the curvature and these covariant derivatives are necessary to determine the unitary equivalence class of the operator T is an element of B-n(). Here we show that some of the covariant derivatives are necessary. Our examples consist of homogeneous operators in B-n(). For homogeneous operators, the simultaneous unitary equivalence class of the curvature and all its covariant derivatives at any point w in the unit disc are determined from the simultaneous unitary equivalence class at 0. This shows that it is enough to calculate all the invariants and compare them at just one point, say 0. These calculations are then carried out in number of examples. One of our main results is that the curvature along with its covariant derivative of order (0, 1) at 0 determines the equivalence class of generic homogeneous Hermitian holomorphic vector bundles over the unit disc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We set up Wigner distributions for N-state quantum systems following a Dirac-inspired approach. In contrast to much of the work in this study, requiring a 2N x 2N phase space, particularly when N is even, our approach is uniformly based on an N x N phase-space grid and thereby avoids the necessity of having to invoke a `quadrupled' phase space and hence the attendant redundance. Both N odd and even cases are analysed in detail and it is found that there are striking differences between the two. While the N odd case permits full implementation of the marginal property, the even case does so only in a restricted sense. This has the consequence that in the even case one is led to several equally good definitions of the Wigner distributions as opposed to the odd case where the choice turns out to be unique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove the spectral invariance of SG pseudo-differential operators on L-P(R-n), 1 < p < infinity, by using the equivalence of ellipticity and Fredholmness of SG pseudo-differential operators on L-p(R-n), 1 < p < infinity. A key ingredient in the proof is the spectral invariance of SC pseudo-differential operators on L-2(R-n).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel k(S) (z, w) = (1 - z (w) over tilde)(-1) for |z|, |w| < 1, by means of (1/k(S))(T,T*) >= 0, we consider an arbitrary open connected domain Omega in C-n, a complete Pick kernel k on Omega and a tuple T = (T-1, ..., T-n) of commuting bounded operators on a complex separable Hilbert space H such that (1/k)(T,T*) >= 0. For a complete Pick kernel the 1/k functional calculus makes sense in a beautiful way. It turns out that the model theory works very well and a characteristic function can be associated with T. Moreover, the characteristic function is then a complete unitary invariant for a suitable class of tuples T.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of expressing a general dynamical variable in quantum mechanics as a function of a primitive set of operators is studied from several points of view. In the context of the Heisenberg commutation relation, the Weyl representation for operators and a new Fourier-Mellin representation are related to the Heisenberg group and the groupSL(2,R) respectively. The description of unitary transformations via generating functions is analysed in detail. The relation between functions and ordered functions of noncommuting operators is discussed, and results closely paralleling classical results are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider numerical solutions of nonlinear multiterm fractional integrodifferential equations, where the order of the highest derivative is fractional and positive but is otherwise arbitrary. Here, we extend and unify our previous work, where a Galerkin method was developed for efficiently approximating fractional order operators and where elements of the present differential algebraic equation (DAE) formulation were introduced. The DAE system developed here for arbitrary orders of the fractional derivative includes an added block of equations for each fractional order operator, as well as forcing terms arising from nonzero initial conditions. We motivate and explain the structure of the DAE in detail. We explain how nonzero initial conditions should be incorporated within the approximation. We point out that our approach approximates the system and not a specific solution. Consequently, some questions not easily accessible to solvers of initial value problems, such as stability analyses, can be tackled using our approach. Numerical examples show excellent accuracy. DOI: 10.1115/1.4002516]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rotating shear flows, when angular momentum increases and angular velocity decreases as functions of radiation coordinate, are hydrodynamically stable under linear perturbation. The Keplerian flow is an example of such a system, which appears in an astrophysical context. Although decaying eigenmodes exhibit large transient energy growth of perturbation which could govern nonlinearity in the system, the feedback of inherent instability to generate turbulence seems questionable. We show that such systems exhibiting growing pseudo-eigenmodes easily reach an upper bound of growth rate in terms of the logarithmic norm of the involved non-normal operators, thus exhibiting feedback of inherent instability. This supports the existence of turbulence of hydrodynamic origin in the Keplerian accretion disc in astrophysics. Hence, this answers the question of the mismatch between the linear theory and experimental/observed data and helps in resolving the outstanding question of the origin of turbulence therein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An explicit construction of all the homogeneous holomorphic Hermitian vector bundles over the unit disc D is given. It is shown that every such vector bundle is a direct sum of irreducible ones. Among these irreducible homogeneous holomorphic Hermitian vector bundles over D, the ones corresponding to operators in the Cowen-Douglas class B-n(D) are identified. The classification of homogeneous operators in B-n(D) is completed using an explicit realization of these operators. We also show how the homogeneous operators in B-n(D) split into similarity classes. (C) 2011 Elsevier Inc. All rights reserved.