27 resultados para Mergers and acquisitions, analysts, consensus forecast error


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a full-rate, full-diversity space-time block code(STBC) with low maximum likelihood (ML) decoding complexity and high coding gain for the 4 transmit antenna, 2 receive antenna (4 x 2) multiple-input multiple-output (MIMO) system that employs 4/16-QAM. For such a system, the best code known is the DjABBA code and recently, Biglieri, Hong and Viterbo have proposed another STBC (BHV code) for 4-QAM which has lower ML-decoding complexity than the DjABBA code but does not have full-diversity like the DjABBA code. The code proposed in this paper has the same ML-decoding complexity as the BHV code for any square M-QAM but has full-diversity for 4- and 16-QAM. Compared with the DjABBA code, the proposed code has lower ML-decoding complexity for square M-QAM constellation, higher coding gain for 4- and 16-QAM, and hence a better codeword error rate (CER) performance. Simulation results confirming this are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a mobile ad-hoc network scenario, where communication nodes are mounted on moving platforms (like jeeps, trucks, tanks, etc.), use of V-BLAST requires that the number of receive antennas in a given node must be greater than or equal to the sum of the number of transmit antennas of all its neighbor nodes. This limits the achievable spatial multiplexing gain (data rate) for a given node. In such a scenario, we propose to achieve high data rates per node through multicode direct sequence spread spectrum techniques in conjunction with V-BLAST. In the considered multicode V-BLAST system, the receiver experiences code domain interference (CDI) in frequency selective fading, in addition to space domain interference (SDI) experienced in conventional V-BLAST systems. We propose two interference cancelling receivers that employ a linear parallel interference cancellation approach to handle the CDI, followed by conventional V-BLAST detector to handle the SDI, and then evaluate their bit error rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the �Single Network Adaptive Critic (SNAC)� is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulation is an important means of evaluating new microarchitectures. With the invention of multi-core (CMP) platforms, simulators are becoming larger and more complex. However, with the availability of CMPs with larger caches and higher operating frequency, the wall clock time required for simulating an application has become comparatively shorter. Reducing this simulation time further is a great challenge, especially in the case of multi-threaded workload due to indeterminacy introduced due to simultaneously executing various threads. In this paper, we propose a technique for speeding multi-core simulation. The model of the processor core and cache are replaced with functional models, to achieve speedup. A timed Petri net model is used to estimate the execution time of the processor and the memory access latencies are estimated using hit/miss information obtained from the functional model of the cache. This model can be used to predict performance of data parallel applications or multiprogramming workload on CMP platform with various cache hierarchies and shared bus interconnect. The error in estimation of the execution time of an application is within 6%. The speedup achieved ranges between an average of 2x--4x over the cycle accurate simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares and analyzes the performance of distributed cophasing techniques for uplink transmission over wireless sensor networks. We focus on a time-division duplexing approach, and exploit the channel reciprocity to reduce the channel feedback requirement. We consider periodic broadcast of known pilot symbols by the fusion center (FC), and maximum likelihood estimation of the channel by the sensor nodes for the subsequent uplink cophasing transmission. We assume carrier and phase synchronization across the participating nodes for analytical tractability. We study binary signaling over frequency-flat fading channels, and quantify the system performance such as the expected gains in the received signal-to-noise ratio (SNR) and the average probability of error at the FC, as a function of the number of sensor nodes and the pilot overhead. Our results show that a modest amount of accumulated pilot SNR is sufficient to realize a large fraction of the maximum possible beamforming gain. We also investigate the performance gains obtained by censoring transmission at the sensors based on the estimated channel state, and the benefits obtained by using maximum ratio transmission (MRT) and truncated channel inversion (TCI) at the sensors in addition to cophasing transmission. Simulation results corroborate the theoretical expressions and show the relative performance benefits offered by the various schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-infrared diffuse optical tomography (DOT) technique has the capability of providing good quantitative reconstruction of tissue absorption and scattering properties with additional inputs such as input and output modulation depths and correction for the photon leakage. We have calculated the two-dimensional (2D) input modulation depth from three-dimensional (3D) diffusion to model the 2D diffusion of photons. The photon leakage when light traverses from phantom to the fiber tip is estimated using a solid angle model. The experiments are carried for single (5 and 6 mm) as well as multiple inhomogeneities (6 and 8 mm) with higher absorption coefficient in a homogeneous phantom. Diffusion equation for photon transport is solved using finite element method and Jacobian is modeled for reconstructing the optical parameters. We study the development and performance of DOT system using modulated single light source and multiple detectors. The dual source methods are reported to have better reconstruction capabilities to resolve and localize single as well as multiple inhomogeneities because of its superior noise rejection capability. However, an experimental setup with dual sources is much more difficult to implement because of adjustment of two out of phase identical light probes symmetrically on either side of the detector during scanning time. Our work shows that with a relatively simpler system with a single source, the results are better in terms of resolution and localization. The experiments are carried out with 5 and 6 mm inhomogeneities separately and 6 and 8 mm inhomogeneities both together with absorption coefficient almost three times as that of the background. The results show that our experimental single source system with additional inputs such as 2D input/output modulation depth and air fiber interface correction is capable of detecting 5 and 6 mm inhomogeneities separately and can identify the size difference of multiple inhomogeneities such as 6 and 8 mm. The localization error is zero. The recovered absorption coefficient is 93% of inhomogeneity that we have embedded in experimental phantom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Edge-preserving smoothing is widely used in image processing and bilateral filtering is one way to achieve it. Bilateral filter is a nonlinear combination of domain and range filters. Implementing the classical bilateral filter is computationally intensive, owing to the nonlinearity of the range filter. In the standard form, the domain and range filters are Gaussian functions and the performance depends on the choice of the filter parameters. Recently, a constant time implementation of the bilateral filter has been proposed based on raisedcosine approximation to the Gaussian to facilitate fast implementation of the bilateral filter. We address the problem of determining the optimal parameters for raised-cosine-based constant time implementation of the bilateral filter. To determine the optimal parameters, we propose the use of Stein's unbiased risk estimator (SURE). The fast bilateral filter accelerates the search for optimal parameters by faster optimization of the SURE cost. Experimental results show that the SURE-optimal raised-cosine-based bilateral filter has nearly the same performance as the SURE-optimal standard Gaussian bilateral filter and the Oracle mean squared error (MSE)-based optimal bilateral filter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose modulation diversity techniques for Spatial Modulation (SM) system using Complex Interleaved Orthogonal Design (CIOD). Specifically, we show that the standard SM scheme can achieve a transmit diversity order of two by using the CIOD meant for two transmit antenna system without incurring any additional system complexity or bandwidth requirement. Furthermore, we propose a low-complexity maximum likelihood detector for our CIOD based SM schemes by exploiting the structure of the CIOD. We show with our simulation results that the proposed schemes offer transmit diversity order of two and give a better symbol error rate performance than the conventional SM scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the problem of channel estimation at the transmitter in a spatial multiplexing-based Time Division Duplex (TDD) Multiple Input Multiple Output (MIMO) system with perfect CSIR. A novel channel-dependent Reverse Channel Training (RCT) sequence is proposed, using which the transmitter estimates the beamforming vectors for forward link data transmission. This training sequence is designed based on the following two metrics: (i) a capacity lower bound, and (ii) the mean square error in the estimate. The performance of the proposed training scheme is analyzed and is shown to significantly outperform the conventional orthogonal RCT sequence. Also, in the case where the transmitter uses water-filling power allocation for data transmission, a novel RCT sequence is proposed and optimized with respect to the MSE in estimating the transmit covariance matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A guidance law derived by modifying state dependent Riccati equation technique, to enable the imposition of a predetermined terminal intercept angle to a maneuvering target, is presented in this paper. The interceptor is assumed to have no knowledge about the type of maneuver the target is executing. The problem is cast in a non-cooperative game theoretic form. The guidance law obtained is dependent on the LOS angular rotational rate and on the impact angle error. Theoretical conditions which guarantee existence of solutions under this method have been derived. It is shown that imposing the impact angle constraint calls for an increase in the gains of the guidance law considerably, subsequently requiring a higher maneuverability advantage of the interceptor. The performance of the proposed guidance law is studied using a non-linear two dimensional simulation of the relative kinematics, assuming first order dynamics for the interceptor and target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of intercepting a maneuvering target at a prespecified impact angle is posed in nonlinear zero-sum differential games framework. A feedback form solution is proposed by extending state-dependent Riccati equation method to nonlinear zero-sum differential games. An analytic solution is obtained for the state-dependent Riccati equation corresponding to the impact-angle-constrained guidance problem. The impact-angle-constrained guidance law is derived using the states line-of-sight rate and projected terminal impact angle error. Local asymptotic stability conditions for the closed-loop system corresponding to these states are studied. Time-to-go estimation is not explicitly required to derive and implement the proposed guidance law. Performance of the proposed guidance law is validated using two-dimensional simulation of the relative nonlinear kinematics as well as a thrust-driven realistic interceptor model.