68 resultados para Memory T cells
Resumo:
We had earlier proposed a hypothesis to explain the mechanism of perpetuation of immunological memory based on the operation of idiotypic network in the complete absence of antigen. Experimental evidences were provided for memory maintenance through anti-idiotypic antibody (Ab2) carrying the internal image of the antigen. In the present work, we describe a structural basis for such memory perpetuation by molecular modeling and structural analysis studies. A three-dimensional model of Ab2 was generated and the structure of the antigenic site on the hemagglutinin protein H of Rinderpest virus was modeled using the structural template of hemagglutinin protein of Measles virus. Our results show that a large portion of heavy chain containing the CDR regions of Ab2 resembles the domain of the hemagglutinin housing the epitope regions. The similarity demonstrates that an internal image of the H antigen is formed in Ab2, which provides a structural basis for functional mimicry demonstrated earlier. This work brings out the importance of the structural similarity between a domain of hemagglutinin protein to that of its corresponding Ab2. It provides evidence that Ab2 is indeed capable of functioning as surrogate antigen and provides support to earlier proposed relay hypothesis which has provided a mechanism for the maintenance of immunological memory.
Resumo:
We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.
Resumo:
We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.
Resumo:
We had earlier proposed a hypothesis to explain the mechanism of perpetuation of immunological memory based on the operation of idiotypic network in the complete absence of antigen. Experimental evidences were provided for memory maintenance through anti-idiotypic antibody (Ab(2)) carrying the internal image of the antigen. In the present work, we describe a structural basis for such memory perpetuation by molecular modeling and structural analysis studies. A three-dimensional model of Ab(2) was generated and the structure of the antigenic site on the hemagglutinin protein H of Rinderpest virus was modeled using the structural template of hemagglutinin protein of Measles virus. Our results show that a large portion of heavy chain containing the CDR regions of Ab(2) resembles the domain of the hemagglutinin housing the epitope regions. The similarity demonstrates that an internal image of the H antigen is formed in Ab(2), which provides a structural basis for functional mimicry demonstrated earlier. This work brings out the importance of the structural similarity between a domain of hemagglutinin protein to that of its corresponding Ab(2). It provides evidence that Ab(2) is indeed capable of functioning as surrogate antigen and provides support to earlier proposed relay hypothesis which has provided a mechanism for the maintenance of immunological memory.
Resumo:
Electrochemical data are reported for oxygen reduction on platinized coconut-shell charcoal electrodes in 2.5M H*SO,, and 7M HsF’04. In both these media the electrodes exhibit good activity and can sustain currents up to 600 mA cm-* at a polarization of about 400 mV from their rest potentials. The overall performance is comparable with the best type of carbonsupported platinum electrodes reported in the literature.
Resumo:
Synthesis of mesoporous zirconium phosphate (MZP) by co-assembly of a tri-block copolymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide and phosphorous trichloride as inorganic precursors is reported. MZP with a specific surface area of 84 m(2) g(-1) average pore diameter of about 17 nm and pore volume of 0.35 cm(3) g(-1) has been prepared, and characterised by X-ray diffraction (XRD) and transmission electron microscopy. Nafion-MZP composite membrane is obtained by employing MZP as a surface-functionalised solid-super-acid-proton-conducting medium as well as all inorganic filler with high affinity to absorb water and fast proton-transport across the electrolyte membrane even under low relative humidity (RH) conditions. The composite membranes have been evaluated in H-2/O-2 polymer electrolyte fuel cells (PEFCs) at varying RH values between 18 and 100%; a peak power density of 355 mW cm(-2) at a load current density of 1,100 mA cm(-2) is achieved with the PEFC employing Nafion-MZP composite membrane while operating at optimum temperature (70 degrees C) under 18% RH and ambient pressure. On operating the PEFC employing Nafion-MZP membrane electrolyte with hydrogen and air feeds at ambient pressure and a RH value of 18%, a peak power density of 285 mW cm(-2) at the optimum temperature (60 degrees C) is achieved. In contrast, operating under identical conditions, a peak power density of only similar to 170 mW cm(-2) is achieved with the PEFC employing Nafion-1135 membrane electrolyte.
Resumo:
Background Vascular endothelial growth factor (VEGF) is known to play a major role in angiogenesis. A soluble form of Flt-1, a VEGF receptor, is potentially useful as an antagonist of VEGF, and accumulating evidence suggests the applicability of sFlt-1 in tumor suppression. In the present study, we have developed and tested strategies targeted specifically to VEGF for the treatment of ascites formation.Methods As an initial strategy, we produced recombinant sFLT-1 in the baculovirus expression system and used it as a trap to sequester VEGF in the murine ascites carcinoma model. The effect of the treatment on the weight of the animal, cell number, ascites volume and proliferating endothelial cells was studied. The second strategy involved, producing Ehrlich ascites tumor (EAT) cells stably transfected with vectors carrying cDNA encoding truncated form of Flt-1 and using these cells to inhibit ascites tumors in a nude mouse model. Results The sFLT-1 produced by the baculovirus system showed potent antiangiogenic activity as assessed by rat cornea and tube formation assay. sFLT-1 treatment resulted in reduced peritoneal angiogenesis with a concomitant decrease in tumor cell number, volume of ascites, amount of free VEGF and the number of invasive tumor cells as assayed by CD31 staining. EAT cells stably transfected with truncated form of Flt-1 also effectively reduced the tumor burden in nude mice transplanted with these cells, and demonstrated a reduction in ascites formation and peritoneal angiogenesis. Conclusions The inhibition of peritoneal angiogenesis and tumor growth by sequestering VEGF with either sFlt-1 gene expression by recombinant EAT cells or by direct sFLT-1 protein therapy is shown to comprise a potential therapy. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Surface composition and depth profile studies of hemiplated thin film CdS:CuzS solar cells have been carried out using x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) techniques. These studies indicate that the junction is fairly diffused in the as-prepared cell. However, heat treatment of the cell at 210°C in air relatively sharpens the junction and improves the cell performance. Using the Cu(2p3p)/S(2p) ratio as well as the Cu(LVV)/(LMM) Auger intensity ratio, it can be inferred that the nominal valency of copper in the layers above the junction is Cut and it is essentially in the CUSS form. Copper signals are observed from layers deep down in the cell. These seem to appear mostly from the grain boundary region. From the observed concentration of Cd, Cu and S in these deeper layers and the Cu(LVV)/(LMM) ratio it appears that the signals from copper essentially originate partly from copper in CuS and partly from Cu2t trapped in the lattice. It is significant to note that the nominal valence state of copper changes rather abruptly from Cut to Cuz+ across the junction.
Resumo:
In this paper, the design and implementation of a single shared bus, shared memory multiprocessing system using Intel's single board computers is presented. The hardware configuration and the operating system developed to execute the parallel algorithms are discussed. The performance evaluation studies carried out on Image are outlined.
Resumo:
Using the promeasure technique, we give an alternative evaluation of a path integral corresponding to a quadratic action with a generalized memory.
Resumo:
5-Fluorouracil (5-FU) is one of the most widely used drugs for treatment of cancers, including breast cancer that exhibits its anticancer activity by inhibiting DNA synthesis and also incorporated into DNA and RNA. The objective of this investigation was to find out the total nucleotide metabolism genes regulated by 5-FU in breast cancer cell line. The breast cancer cell line MCF-7 was treated with the drug 5-FU. To analyze the expression of genes, we have conducted the experiment using 1.7k and 19k human microarray slide and confirmed the expression of genes by semiquantitative reverse transcription-polymerase chain reaction. The expression of 44 genes involved in the nucleotide metabolism pathway was quantified. Of these 44 genes analyzed, transcription of 6 genes were upregulated and 9 genes were downregulated. Earlier studies revealed that the transcription of genes for key enzymes like thymidylate synthase, thymidinekinase, and dihydropyrimidine dehydrogenase are regulated by 5-FU. This study identified some novel genes like thioredoxin reductase, ectonucleotide triphosphate dephosphorylase, and CTP synthase are regulated by 5-FU. The data also reveal large-scale perturbation in transcription of genes not involved directly in the known mechanism of action of 5-FU.
Resumo:
Arrest of proliferation is one of the prerequisites for differentiation of cytotrophoblasts into syncytiotrophoblasts, and thus during differentiation telomerase activity, as well as human telomerase reverse transcriptase (hTERT) expression, is down-regulated. Considering this, it is of interest to investigate whether syncytium formation can be delayed by prolonging the expression of telomerase in cytotrophoblasts. BeWo cells were transfected with pLPC-hTERT retroviral vector and the reverse transcription-polymerase chain reaction analysis for hTERT mRNA concentrations in the transfected cells revealed a several-fold increase in hTERT mRNA compared with the cells transfected with empty vector, and this confirmed that the transfection was successful. An increase in the proliferation, as assessed by bromodeoxyuridine incorporation assay, as well as an increase in mRNA and protein concentration of various cyclins and proliferating cell nuclear antigen, was noticed. The effect of hTERT transfection was also assessed after the addition of forskolin to induce differentiation and it was observed that cell–cell fusion was delayed and differentiation did not occur in hTERT-transfected cells. However, the effects seen were only transient as stable transfection was not possible and the cells were undergoing apoptosis after 72 h, which suggested that apart from hTERT other factors might be important for immortalization of BeWo cells.
Resumo:
A constitutive modeling approach for shape memory alloy (SMA) wire by taking into account the microstructural phase inhomogeneity and the associated solid-solid phase transformation kinetics is reported in this paper. The approach is applicable to general thermomechanical loading. Characterization of various scales in the non-local rate sensitive kinetics is the main focus of this paper. Design of SMA materials and actuators not only involve an optimal exploitation of the hysteresis loops during loading-unloading, but also accounts for fatigue and training cycle identifications. For a successful design of SMA integrated actuator systems, it is essential to include the microstructural inhomogeneity effects and the loading rate dependence of the martensitic evolution, since these factors play predominant role in fatigue. In the proposed formulation, the evolution of new phase is assumed according to Weibull distribution. Fourier transformation and finite difference methods are applied to arrive at the analytical form of two important scaling parameters. The ratio of these scaling parameters is of the order of 10(6) for stress-free temperature-induced transformation and 10(4) for stress-induced transformation. These scaling parameters are used in order to study the effect of microstructural variation on the thermo-mechanical force and interface driving force. It is observed that the interface driving force is significant during the evolution. Increase in the slopes of the transformation start and end regions in the stress-strain hysteresis loop is observed for mechanical loading with higher rates.
Resumo:
Using the promeasure technique, we give an alternative evaluation of a path integral corresponding to a quadratic action with a generalized memory.
Resumo:
To study the structure activity relationship (SAR) on the cytotoxic activity and probe the structural requirement for the potent antitumor activity, a series of novel diazaspiro bicyclo hydantoin derivatives were designed and synthesized. Their structures were confirmed by H-1 NMR, LCMS and IR analyses. The antiproliferative effect of these compounds were determined against human leukemia, K562 (chronic myelogenous leukemia) and CEM (T-cell leukemia) cells using trypan blue and MTT assay, and the SAR associated with the position of N-terminal substituents in diazaspiro bicyclo hydantoin have also been discussed. It has been observed that these compounds displayed strong, moderate and weak cytotoxic activities. Interestingly, compounds having electron withdrawing groups at third and fourth position of the phenyl ring displayed selectively cytotoxic activities to both the cell lines tested with IC50 value lower than 50 mu M. In addition, the cytotoxic activities of the compounds 7(a-o) bearing the substituents at N-3 position of diazaspiro bicyclo hydantoin increases in the order alkene > ester > ether and plays an important role in determining their antitumor activities. The position and number of substituents in benzyl group attached to N-8 of diazaspiro bicyclo hydantoin nucleus interacted selectively with specific targets leading to the difference of biochemical and pharmacological effects.