26 resultados para Medical statistics.
Resumo:
We study the statistical properties of orientation and rotation dynamics of elliptical tracer particles in two-dimensional, homogeneous, and isotropic turbulence by direct numerical simulations. We consider both the cases in which the turbulent flow is generated by forcing at large and intermediate length scales. We show that the two cases are qualitatively different. For large-scale forcing, the spatial distribution of particle orientations forms large-scale structures, which are absent for intermediate-scale forcing. The alignment with the local directions of the flow is much weaker in the latter case than in the former. For intermediate-scale forcing, the statistics of rotation rates depends weakly on the Reynolds number and on the aspect ratio of particles. In contrast with what is observed in three-dimensional turbulence, in two dimensions the mean-square rotation rate increases as the aspect ratio increases.
Resumo:
Electrical Impedance Tomography (EIT) is a computerized medical imaging technique which reconstructs the electrical impedance images of a domain under test from the boundary voltage-current data measured by an EIT electronic instrumentation using an image reconstruction algorithm. Being a computed tomography technique, EIT injects a constant current to the patient's body through the surface electrodes surrounding the domain to be imaged (Omega) and tries to calculate the spatial distribution of electrical conductivity or resistivity of the closed conducting domain using the potentials developed at the domain boundary (partial derivative Omega). Practical phantoms are essentially required to study, test and calibrate a medical EIT system for certifying the system before applying it on patients for diagnostic imaging. Therefore, the EIT phantoms are essentially required to generate boundary data for studying and assessing the instrumentation and inverse solvers a in EIT. For proper assessment of an inverse solver of a 2D EIT system, a perfect 2D practical phantom is required. As the practical phantoms are the assemblies of the objects with 3D geometries, the developing of a practical 2D-phantom is a great challenge and therefore, the boundary data generated from the practical phantoms with 3D geometry are found inappropriate for assessing a 2D inverse solver. Furthermore, the boundary data errors contributed by the instrumentation are also difficult to separate from the errors developed by the 3D phantoms. Hence, the errorless boundary data are found essential to assess the inverse solver in 2D EIT. In this direction, a MatLAB-based Virtual Phantom for 2D EIT (MatVP2DEIT) is developed to generate accurate boundary data for assessing the 2D-EIT inverse solvers and the image reconstruction accuracy. MatVP2DEIT is a MatLAB-based computer program which simulates a phantom in computer and generates the boundary potential data as the outputs by using the combinations of different phantom parameters as the inputs to the program. Phantom diameter, inhomogeneity geometry (shape, size and position), number of inhomogeneities, applied current magnitude, background resistivity, inhomogeneity resistivity all are set as the phantom variables which are provided as the input parameters to the MatVP2DEIT for simulating different phantom configurations. A constant current injection is simulated at the phantom boundary with different current injection protocols and boundary potential data are calculated. Boundary data sets are generated with different phantom configurations obtained with the different combinations of the phantom variables and the resistivity images are reconstructed using EIDORS. Boundary data of the virtual phantoms, containing inhomogeneities with complex geometries, are also generated for different current injection patterns using MatVP2DEIT and the resistivity imaging is studied. The effect of regularization method on the image reconstruction is also studied with the data generated by MatVP2DEIT. Resistivity images are evaluated by studying the resistivity parameters and contrast parameters estimated from the elemental resistivity profiles of the reconstructed phantom domain. Results show that the MatVP2DEIT generates accurate boundary data for different types of single or multiple objects which are efficient and accurate enough to reconstruct the resistivity images in EIDORS. The spatial resolution studies show that, the resistivity imaging conducted with the boundary data generated by MatVP2DEIT with 2048 elements, can reconstruct two circular inhomogeneities placed with a minimum distance (boundary to boundary) of 2 mm. It is also observed that, in MatVP2DEIT with 2048 elements, the boundary data generated for a phantom with a circular inhomogeneity of a diameter less than 7% of that of the phantom domain can produce resistivity images in EIDORS with a 1968 element mesh. Results also show that the MatVP2DEIT accurately generates the boundary data for neighbouring, opposite reference and trigonometric current patterns which are very suitable for resistivity reconstruction studies. MatVP2DEIT generated data are also found suitable for studying the effect of the different regularization methods on reconstruction process. Comparing the reconstructed image with an original geometry made in MatVP2DEIT, it would be easier to study the resistivity imaging procedures as well as the inverse solver performance. Using the proposed MatVP2DEIT software with modified domains, the cross sectional anatomy of a number of body parts can be simulated in PC and the impedance image reconstruction of human anatomy can be studied.
Resumo:
In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis. (C) 2014 AIP Publishing LLC.
Resumo:
We present a detailed direct numerical simulation of statistically steady, homogeneous, isotropic, two-dimensional magnetohydrodynamic turbulence. Our study concentrates on the inverse cascade of the magnetic vector potential. We examine the dependence of the statistical properties of such turbulence on dissipation and friction coefficients. We extend earlier work significantly by calculating fluid and magnetic spectra, probability distribution functions (PDFs) of the velocity, magnetic, vorticity, current, stream-function, and magnetic-vector-potential fields, and their increments. We quantify the deviations of these PDFs from Gaussian ones by computing their flatnesses and hyperflatnesses. We also present PDFs of the Okubo-Weiss parameter, which distinguishes between vortical and extensional flow regions, and its magnetic analog. We show that the hyperflatnesses of PDFs of the increments of the stream function and the magnetic vector potential exhibit significant scale dependence and we examine the implication of this for the multiscaling of structure functions. We compare our results with those of earlier studies.
Resumo:
Fiber Bragg Grating (FBG) sensors have become one of the most widely used sensors in the recent times for a variety of applications in the fields of aerospace, civil, automotive, etc. It has been recently realized that FBGs and etched FBGs can play an important role in biomedical applications. This article provides a brief overview of the recent advancements in the application of FBG sensors in bio-mechanical, bio-sensing and bio-medical fields.
Resumo:
The complex perovskite oxide SrRuO3 shows intriguing transport properties at low temperatures due to the interplay of spin, charge, and orbital degrees of freedom. One of the open questions in this system is regarding the origin and nature of the low-temperature glassy state. In this paper we report on measurements of higher-order statistics of resistance fluctuations performed in epitaxial thin films of SrRuO3 to probe this issue. We observe large low-frequency non-Gaussian resistance fluctuations over a certain temperature range. Our observations are compatible with that of a spin-glass system with properties described by hierarchical dynamics rather than with that of a simple ferromagnet with a large coercivity.
Resumo:
We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend to suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects. (C) 2015 AIP Publishing LLC.
Resumo:
Unmet clinical needs remain the primary driving force for innovations in medical devices. While appropriate mechanisms to protect these innovative outcomes are essential, the performance of clinical trials to ensure safety is also mandated before the invention is ready for public use. Literature explaining the relationship between patenting activities and clinical trials of medical devices is scarce. Linking patent ownership to clinical trials may imply product leadership and value chain control. In this paper, we use patent data from Indian Patent Office (IPO), PCT, and data from Clinical Trials Registry of India (CTRI) to identify whether patent assignees have any role in leading as primary sponsors of clinical trials. A total of 42 primary sponsors are identified from the CTRI database in India. Number of patents awarded to these primary sponsors in the particular medical device, total number of patents awarded to the primary sponsor in all technologies, total number of patents in the specific medical device technology provides an indication of leadership and control in the value chain.
Resumo:
In this paper, motivated by observations of non-exponential decay times in the stochastic binding and release of ligand-receptor systems, exemplified by the work of Rogers et al on optically trapped DNA-coated colloids (Rogers et al 2013 Soft Matter 9 6412), we explore the general problem of polymer-mediated surface adhesion using a simplified model of the phenomenon in which a single polymer molecule, fixed at one end, binds through a ligand at its opposite end to a flat surface a fixed distance L away and uniformly covered with receptor sites. Working within the Wilemski-Fixman approximation to diffusion-controlled reactions, we show that for a flexible Gaussian chain, the predicted distribution of times f(t) for which the ligand and receptor are bound is given, for times much shorter than the longest relaxation time of the polymer, by a power law of the form t(-1/4). We also show when the effects of chain stiffness are incorporated into this model (approximately), the structure of f(t) is altered to t(-1/2). These results broadly mirror the experimental trends in the work cited above.
Resumo:
We investigate the effect of time-dependent cyclic-adiabatic driving on the charge transport in a quantum junction. We propose a nonequilibrium Green's function formalism to study the statistics of the charge pumped (at zero bias) through the junction. The formulation is used to demonstrate charge pumping in a single electronic level coupled to two (electronic) reservoirs with time-dependent couplings. An analytical expression for the average pumped current for a general cyclic driving is derived. It is found that for zero bias, for a certain class of driving, the Berry phase contributes only to the odd cumulants. In contrast, a quantum master equation formulation does not show a Berry-phase effect at all.
Resumo:
We consider the nonabelian sandpile model defined on directed trees by Ayyer et al. (2015 Commun. Math. Phys. 335 1065). and restrict it to the special case of a one-dimensional lattice of n sites which has open boundaries and disordered hopping rates. We focus on the joint distribution of the integrated currents across each bond simultaneously, and calculate its cumulant generating function exactly. Surprisingly, the process conditioned on seeing specified currents across each bond turns out to be a renormalised version of the same process. We also remark on a duality property of the large deviation function. Lastly, all eigenvalues and both Perron eigenvectors of the tilted generator are determined.