111 resultados para Mean-Periodic Function
Resumo:
A spectral method that obtains the soliton and periodic solutions to the nonlinear wave equation is presented. The results show that the nonlinear group velocity is a function of the frequency shift as well as of the soliton power. When the frequency shift is a function of time, a solution in terms of the Jacobian elliptic function is obtained. This solution is periodic in nature, and, to generate such an optical pulse train, one must simultaneously amplitude- and frequency-modulate the optical carrier. Finally, we extend the method to include the effect of self-steepening.
Measurement for Thermal Effusivity of AlxGa1-xN Alloys Using Thermoreflectance with Periodic Heating
Resumo:
AlxGa1-xN alloys with x=0.375, 0.398, 0.401, 0.592 and 0.696 were deposited on sapphire substrate by the hydride-vapor-phase epitaxy (HVPE) method. Thermal effusivity measurements were carried out on AlxGa1-xN alloys using a thermal microscope at room temperature. The lag between sinusoidal heating laser wave and thermoreflectance wave was used to measure the thermal diffusivity. Thermal conductivity values of the AlxGa1-xN alloys were also obtained as a function of AIN mole fraction in the alloy. The thermal conductivity was found to decrease with increasing AIN fraction and the experimental data agree with values estimated using the virtual crystal model.
Resumo:
We present analytic results to show that the Schwinger-boson hole-fermion mean-field state exhibits non-Fermi liquid behavior due to spin-charge separation. The physical electron Green's function consists of three additive components. (a) A Fermi-liquid component associated with the bose condensate. (b) A non-Fermi liquid component which has a logarithmic peak and a long tail that gives rise to a linear density of states that is symmetric about the Fermi level and a momentum distribution function with a logarithmic discontinuity at the Fermi surface. (c) A second non-Fermi liquid component associated with the thermal bosons which leads to a constant density of states. It is shown that zero-point fluctuations associated with the spin-degrees of freedom are responsible for the logarithmic instabilities and the restoration of particle-hole symmetry close to the Fermi surface.
Resumo:
A novel approach for lossless as well as lossy compression of monochrome images using Boolean minimization is proposed. The image is split into bit planes. Each bit plane is divided into windows or blocks of variable size. Each block is transformed into a Boolean switching function in cubical form, treating the pixel values as output of the function. Compression is performed by minimizing these switching functions using ESPRESSO, a cube based two level function minimizer. The minimized cubes are encoded using a code set which satisfies the prefix property. Our technique of lossless compression involves linear prediction as a preprocessing step and has compression ratio comparable to that of JPEG lossless compression technique. Our lossy compression technique involves reducing the number of bit planes as a preprocessing step which incurs minimal loss in the information of the image. The bit planes that remain after preprocessing are compressed using our lossless compression technique based on Boolean minimization. Qualitatively one cannot visually distinguish between the original image and the lossy image and the value of mean square error is kept low. For mean square error value close to that of JPEG lossy compression technique, our method gives better compression ratio. The compression scheme is relatively slower while the decompression time is comparable to that of JPEG.
Resumo:
Hemiorchidectomy (HO) in the adult male bonnet monkey results in a selective increase in circulating concentrations of FSH and testosterone, and this is accompanied by compensatory increase in sperm production by the remaining testis. We investigated the possible role of increased FSH concentration that occurs after HO in the compensatory increase in the activity of the remaining testis. Of eight adult male bonnet monkeys that underwent HO, four received i.v. injections every other day for 30 days of a well-characterized ovine FSH antiserum (a/s) that cross-reacts with monkey FSH. The remaining four males received normal monkey serum (NMS) as control treatment in a protocol similar to that employed for ais-treated males. Blood samples were collected between 2100 and 2200 h before and 1/2, 1, 3, 5, 7, 14, 22, and 29 days after HO. Testicular weight, number of 3 beta-hydroxy steroid dehydrogenase-positive (3 beta-HSD+) cells, and DNA flow cytometric analysis of germ cell populations were obtained for testes collected before and at the termination of NMS or ais treatment. In NMS-treated males, circulating serum FSH concentrations progressively increased to reach a maximal level by Day 7 after HO (1.95 +/- 0.3 vs. 5.6 +/- 0.7 ng/ml on Days -1 and 7, respectively). Within 30 min of ais injection, FSH antibodies were detected in circulation, and the antibody level was maintained at a constant level between Day 7 and end of treatment (exhibiting 50-60% binding to I-125-hFSH). Although circulating mean nocturnal serum testosterone concentration showed an initial decrease, it rose gradually to pre-HO concentrations by Day 7 in NMS-treated males. In contrast, nocturnal mat serum testosterone concentrations in a/s-treated males remained lower than in NMS-treated controls (p < 0.05) up to Day 22 and thereafter only marginally increased. Testicular weights increased (p < 0.05) over the pre-HO weight in NMS- but not in ais-treated males. After HO, the number of 3 beta-HSD+ cells (Leydig cells) was markedly increased but was significantly (p < 0.05) higher in NMS-treated males compared to a/s-treated males. A significant (p < 0.05) reduction in the primary spermatocyte population of germ cells was observed in ais-treated compared to NMS-treated males. These results suggest that the increased FSH occurring after HO could be intimately involved in increasing the compensatory functional activity of the remaining testis in the male bonnet monkey.
Resumo:
We incorporate the effects of fluctuations in a density functional analysis of the freezing of a colloidal liquid in the presence of an external potential generated by interfering laser beams. A mean-field treatment, using a density functional theory, predicts that with the increase in the strength of the modulating potential, the freezing transition changes from a first order to a continuous one via a tricritical point for a suitable choice of the modulating wavevectors. We demonstrate here that the continuous nature of the freezing transition at large values of the external potential V-e survives the presence of fluctuations. We also show that fluctuations tend to stabilize the liquid phase in the large V-e regime.
Resumo:
The velocity distribution function for the steady shear flow of disks (in two dimensions) and spheres (in three dimensions) in a channel is determined in the limit where the frequency of particle-wall collisions is large compared to particle-particle collisions. An asymptotic analysis is used in the small parameter epsilon, which is naL in two dimensions and na(2)L in three dimensions, where; n is the number density of particles (per unit area in two dimensions and per unit volume in three dimensions), L is the separation of the walls of the channel and a is the particle diameter. The particle-wall collisions are inelastic, and are described by simple relations which involve coefficients of restitution e(t) and e(n) in the tangential and normal directions, and both elastic and inelastic binary collisions between particles are considered. In the absence of binary collisions between particles, it is found that the particle velocities converge to two constant values (u(x), u(y)) = (+/-V, O) after repeated collisions with the wall, where u(x) and u(y) are the velocities tangential and normal to the wall, V = (1 - e(t))V-w/(1 + e(t)), and V-w and -V-w, are the tangential velocities of the walls of the channel. The effect of binary collisions is included using a self-consistent calculation, and the distribution function is determined using the condition that the net collisional flux of particles at any point in velocity space is zero at steady state. Certain approximations are made regarding the velocities of particles undergoing binary collisions :in order to obtain analytical results for the distribution function, and these approximations are justified analytically by showing that the error incurred decreases proportional to epsilon(1/2) in the limit epsilon --> 0. A numerical calculation of the mean square of the difference between the exact flux and the approximate flux confirms that the error decreases proportional to epsilon(1/2) in the limit epsilon --> 0. The moments of the velocity distribution function are evaluated, and it is found that [u(x)(2)] --> V-2, [u(y)(2)] similar to V-2 epsilon and -[u(x)u(y)] similar to V-2 epsilon log(epsilon(-1)) in the limit epsilon --> 0. It is found that the distribution function and the scaling laws for the velocity moments are similar for both two- and three-dimensional systems.
Resumo:
This paper deals with surface profilometry, where we try to detect a periodic structure, hidden in randomness using the matched filter method of analysing the intensity of light, scattered from the surface. From the direct problem of light scattering from a composite rough surface of the above type, we find that the detectability of the periodic structure can be hindered by the randomness, being dependent on the correlation function of the random part. In our earlier works, we had concentrated mainly on the Cauchy-type correlation function for the rough part. In the present work, we show that this technique can determine the periodic structure of different kinds of correlation functions of the roughness, including Cauchy, Gaussian etc. We study the detection by the matched filter method as the nature of the correlation function is varied.
Resumo:
In several systems, the physical parameters of the system vary over time or operating points. A popular way of representing such plants with structured or parametric uncertainties is by means of interval polynomials. However, ensuring the stability of such systems is a robust control problem. Fortunately, Kharitonov's theorem enables the analysis of such interval plants and also provides tools for design of robust controllers in such cases. The present paper considers one such case, where the interval plant is connected with a timeinvariant, static, odd, sector type nonlinearity in its feedback path. This paper provides necessary conditions for the existence of self sustaining periodic oscillations in such interval plants, and indicates a possible design algorithm to avoid such periodic solutions or limit cycles. The describing function technique is used to approximate the nonlinearity and subsequently arrive at the results. Furthermore, the value set approach, along with Mikhailov conditions, are resorted to in providing graphical techniques for the derivation of the conditions and subsequent design algorithm of the controller.
Resumo:
There have been attempts at obtaining robust guidance laws to ensure zero miss distance (ZMD) for interceptors with parametric uncertainties. All these laws require the plant to be of minimum phase type to enable the overall guidance loop transfer function to satisfy strict positive realness (SPR). The SPR property implies absolute stability of the closed loop system, and has been shown in the literature to lead to ZMD because it avoids saturation of lateral acceleration. In these works higher order interceptors are reduced to lower order equivalent models for which control laws are designed to ensure ZMD. However, it has also been shown that when the original system with right half plane (RHP) zeros is considered, the resulting miss distances, using such strategies, can be quite high. In this paper, an alternative approach using the circle criterion establishes the conditions for absolute stability of the guidance loop and relaxes the conservative nature of some earlier results arising from assumption of in�nite engagement time. Further, a feedforward scheme in conjunction with a lead-lag compensator is used as one control strategy while a generalized sampled hold function is used as a second strategy, to shift the RHP transmission zeros, thereby achieving ZMD. It is observed that merely shifting the RHP zero(s) to the left half plane reduces miss distances signi�cantly even when no additional controllers are used to ensure SPR conditions.
Resumo:
We study the dynamics of a one-dimensional lattice model of hard core bosons which is initially in a superfluid phase with a current being induced by applying a twist at the boundary. Subsequently, the twist is removed, and the system is subjected to periodic delta-function kicks in the staggered on-site potential. We present analytical expressions for the current and work done in the limit of an infinite number of kicks. Using these, we show that the current (work done) exhibits a number of dips (peaks) as a function of the driving frequency and eventually saturates to zero (a finite value) in the limit of large frequency. The vanishing of the current (and the saturation of the work done) can be attributed to a dynamic localization of the hard core bosons occurring as a consequence of the periodic driving. Remarkably, we show that for some specific values of the driving amplitude, the localization occurs for any value of the driving frequency. Moreover, starting from a half-filled lattice of hard core bosons with the particles localized in the central region, we show that the spreading of the particles occurs in a light-cone-like region with a group velocity that vanishes when the system is dynamically localized.
Resumo:
Inference of molecular function of proteins is the fundamental task in the quest for understanding cellular processes. The task is getting increasingly difficult with thousands of new proteins discovered each day. The difficulty arises primarily due to lack of high-throughput experimental technique for assessing protein molecular function, a lacunae that computational approaches are trying hard to fill. The latter too faces a major bottleneck in absence of clear evidence based on evolutionary information. Here we propose a de novo approach to annotate protein molecular function through structural dynamics match for a pair of segments from two dissimilar proteins, which may share even <10% sequence identity. To screen these matches, corresponding 1 mu s coarse-grained (CG) molecular dynamics trajectories were used to compute normalized root-mean-square-fluctuation graphs and select mobile segments, which were, thereafter, matched for all pairs using unweighted three-dimensional autocorrelation vectors. Our in-house custom-built forcefield (FF), extensively validated against dynamics information obtained from experimental nuclear magnetic resonance data, was specifically used to generate the CG dynamics trajectories. The test for correspondence of dynamics-signature of protein segments and function revealed 87% true positive rate and 93.5% true negative rate, on a dataset of 60 experimentally validated proteins, including moonlighting proteins and those with novel functional motifs. A random test against 315 unique fold/function proteins for a negative test gave >99% true recall. A blind prediction on a novel protein appears consistent with additional evidences retrieved therein. This is the first proof-of-principle of generalized use of structural dynamics for inferring protein molecular function leveraging our custom-made CG FF, useful to all. (C) 2014 Wiley Periodicals, Inc.
Resumo:
Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient. (c) 2015 AIP Publishing LLC.
Resumo:
In this article, we look at the political business cycle problem through the lens of uncertainty. The feedback control used by us is the famous NKPC with stochasticity and wage rigidities. We extend the New Keynesian Phillips Curve model to the continuous time stochastic set up with an Ornstein-Uhlenbeck process. We minimize relevant expected quadratic cost by solving the corresponding Hamilton-Jacobi-Bellman equation. The basic intuition of the classical model is qualitatively carried forward in our set up but uncertainty also plays an important role in determining the optimal trajectory of the voter support function. The internal variability of the system acts as a base shifter for the support function in the risk neutral case. The role of uncertainty is even more prominent in the risk averse case where all the shape parameters are directly dependent on variability. Thus, in this case variability controls both the rates of change as well as the base shift parameters. To gain more insight we have also studied the model when the coefficients are time invariant and studied numerical solutions. The close relationship between the unemployment rate and the support function for the incumbent party is highlighted. The role of uncertainty in creating sampling fluctuation in this set up, possibly towards apparently anomalous results, is also explored.
Resumo:
Affine transformations have proven to be very powerful for loop restructuring due to their ability to model a very wide range of transformations. A single multi-dimensional affine function can represent a long and complex sequence of simpler transformations. Existing affine transformation frameworks like the Pluto algorithm, that include a cost function for modern multicore architectures where coarse-grained parallelism and locality are crucial, consider only a sub-space of transformations to avoid a combinatorial explosion in finding the transformations. The ensuing practical tradeoffs lead to the exclusion of certain useful transformations, in particular, transformation compositions involving loop reversals and loop skewing by negative factors. In this paper, we propose an approach to address this limitation by modeling a much larger space of affine transformations in conjunction with the Pluto algorithm's cost function. We perform an experimental evaluation of both, the effect on compilation time, and performance of generated codes. The evaluation shows that our new framework, Pluto+, provides no degradation in performance in any of the Polybench benchmarks. For Lattice Boltzmann Method (LBM) codes with periodic boundary conditions, it provides a mean speedup of 1.33x over Pluto. We also show that Pluto+ does not increase compile times significantly. Experimental results on Polybench show that Pluto+ increases overall polyhedral source-to-source optimization time only by 15%. In cases where it improves execution time significantly, it increased polyhedral optimization time only by 2.04x.