38 resultados para Maternal infection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogen encoded peptidases are known to be important during infection; however, their roles in modulating host responses in immunocompromised individuals are not well studied. The roles of S. typhimurium (WT) encoded Peptidase N (PepN), a major aminopeptidase and sole M1 family member, was studied in mice lacking Interferon-γ (IFNγ), a cytokine important for immunity. S. typhimurium lacking pepN (ΔpepN) displays enhanced colony forming units (CFU) compared to WT in peripheral organs during systemic infection in C57BL/6 mice. However, Ifnγ(-/-) mice show higher CFU compared to C57BL/6 mice, resulting in lower fold differences between WT and ΔpepN. Concomitantly, reintroduction of pepN in ΔpepN (ΔpepN/pepN) reduces CFU, demonstrating pepN-dependence. Interestingly, expression of a catalytically inactive PepN (ΔpepN/E298A) also lowers CFU, demonstrating that the decrease in CFU is independent of the catalytic activity of PepN. In addition, three distinct differences are observed between infection of C57BL/6 and Ifnγ(-/-) mice: First, serum amounts of TNFα and IL1β post infection are significantly lower in Ifnγ(-/-) mice. Second, histological analysis of C57BL/6 mice reveals that damage in spleen and liver upon infection with WT or ΔpepN is greater compared to ΔpepN/pepN or ΔpepN/E298A. On the other hand, Ifnγ(-/-) mice are highly susceptible to organ damage by all strains of S. typhimurium used in this study. Finally, greater survival of C57BL/6, but not Ifnγ(-/-) mice, is observed upon infection with ΔpepN/pepN or ΔpepN/E298A. Overall, the roles of the host encoded IFNγ during infection with S. typhimurium strains with varying degrees of virulence are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thymic atrophy is known to occur during infections; however, there is limited understanding of its causes and of the cross-talk between different pathways. This study investigates mechanisms involved in thymic atrophy during a model of oral infection by Salmonella enterica serovar Typhimurium (S.typhimurium). Significant death of CD4+CD8+ thymocytes, but not of single-positive thymocytes or peripheral lymphocytes, is observed at later stages during infection with live, but not heat-killed, bacteria. The death of CD4+CD8+ thymocytes is Fas-independent as shown by infection studies with lpr mice. However, apoptosis occurs with lowering of mitochondrial potential and higher caspase-3 activity. The amounts of cortisol, a glucocorticoid, and interferon- (IFN-), an inflammatory cytokine, increase upon infection. To investigate the functional roles of these molecules, studies were performed using Ifn/ mice together with RU486, a glucocorticoid receptor antagonist. Treatment of C57BL/6 mice with RU486 does not affect colony-forming units (CFU), amounts of IFN- and mouse survival; however, there is partial rescue in thymocyte death. Upon infection, Ifn/ mice display higher CFU and lower survival but more surviving thymocytes are recovered. However, there is no difference in cortisol amounts in C57BL/6 and Ifn/ mice. Importantly, the number of CD4+CD8+ thymocytes is significantly higher in Ifn/ mice treated with RU486 along with lower caspase-3 activity and mitochondrial damage. Hence, endogenous glucocorticoid and IFN--mediated pathways are parallel but synergize in an additive manner to induce death of CD4+CD8+ thymocytes during S.typhimurium infection. The implications of this study for host responses during infection are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous study of the properties of red blood cells (RBC) trapped in an optical tweezers trap, an increase in the spectrum of Brownian fluctuations for RBCs from a Plasmodium falciparum culture (due to increased rigidity) compared with normal RBCs was measured. A bystander effect was observed, whereby RBCs actually hosting the parasite had an effect on the physical properties of remaining non-hosting RBCs. The distribution of corner frequency (f(c)) in the power spectrum of single RBCs held in an optical tweezers trap was studied. Two tests were done to confirm the bystander effect. In the first, RBCs from an infected culture were separated into hosting and non-hosting RBCs. In the second, all RBCs were removed from the infected culture, and normal RBCs were incubated in the spent medium. The trapping environment was the same for all measurements so only changes in the properties of RBCs were measured. In the first experiment, a similar and statistically significant increase was measured both for hosting and non-hosting RBCs. In the second experiment, normal RBCs incubated in spent medium started to become rigid after a few hours and showed complete changes (comparable with RBCs from the infected culture) after 24 h. These experiments provide direct evidence of medium-induced changes in the properties of RBCs in an infected culture, regardless of whether the RBCs actually host the parasite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Interferon gamma (IFN-gamma) increases the expression of multiple genes and responses; however, the mechanisms by which IFN-gamma downmodulates cellular responses is not well understood. In this study, the repression of CCL3 and CCL4 by IFN-gamma and nitric oxide synthase 2 (NOS2) in macrophages and upon Salmonella typhimurium infection of mice was investigated. Methods. Small molecule regulators and adherent peritoneal exudates cells (A-PECs) from Nos2(-/-)mice were used to identify the contribution of signaling molecules during IFN-gamma-mediated in vitro regulation of CCL3, CCL4, and CXCL10. In addition, infection of bone marrow-derived macrophages (BMDMs) and mice (C57BL/6, Ifn-gamma(-/), and Nos2(-/-)) with S. typhimurium were used to gain an understanding of the in vivo regulation of these chemokines. Results. IFN-gamma repressed CCL3 and CCL4 in a signal transducer and activator of transcription 1 (STAT1)-NOS2-p38 mitogen activated protein kinase (p38MAPK)-activating transcription factor 3 (ATF3) dependent pathway in A-PECs. Also, during intracellular replication of S. typhimurium in BMDMs, IFN-gamma and NOS2 repressed CCL3 and CCL4 production. The physiological roles of these observations were revealed during oral infection of mice with S. typhimurium, wherein endogenous IFN-gamma and NOS2 enhanced serum amounts of tumor necrosis factor alpha and CXCL10 but repressed CCL3 and CCL4. Conclusions. This study sheds novel mechanistic insight on the regulation of CCL3 and CCL4 in mouse macrophages and during S. typhimurium oral infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

``The goal of this study was to examine the effect of maternal iron deficiency on the developing hippocampus in order to define a developmental window for this effect, and to see whether iron deficiency causes changes in glucocorticoid levels. The study was carried out using pre-natal, post-natal, and pre + post-natal iron deficiency paradigm. Iron deficient pregnant dams and their pups displayed elevated corticosterone which, in turn, differentially affected glucocorticoid receptor (GR) expression in the CA1 and the dentate gyrus. Brain Derived Neurotrophic Factor (BDNF) was reduced in the hippocampi of pups following elevated corticosterone levels. Reduced neurogenesis at P7 was seen in pups born to iron deficient mothers, and these pups had reduced numbers of hippocampal pyramidal and granule cells as adults. Hippocampal subdivision volumes also were altered. The structural and molecular defects in the pups were correlated with radial arm maze performance; reference memory function was especially affected. Pups from dams that were iron deficient throughout pregnancy and lactation displayed the complete spectrum of defects, while pups from dams that were iron deficient only during pregnancy or during lactation displayed subsets of defects. These findings show that maternal iron deficiency is associated with altered levels of corticosterone and GR expression, and with spatial memory deficits in their pups.'' (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guerin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-gamma-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis owes its high pathogenic potential to its ability to evade host immune responses and thrive inside the macrophage. The outcome of infection is largely determined by the cellular response comprising a multitude of molecular events. The complexity and inter-relatedness in the processes makes it essential to adopt systems approaches to study them. In this work, we construct a comprehensive network of infection-related processes in a human macrophage comprising 1888 proteins and 14,016 interactions. We then compute response networks based on available gene expression profiles corresponding to states of health, disease and drug treatment. We use a novel formulation for mining response networks that has led to identifying highest activities in the cell. Highest activity paths provide mechanistic insights into pathogenesis and response to treatment. The approach used here serves as a generic framework for mining dynamic changes in genome-scale protein interaction networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, d-aminolevulinate synthase (ALAS), and the last enzyme, ferrochelatase (FC), in the heme-biosynthetic pathway of Plasmodium berghei (Pb). The wild-type and knockout (KO) parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using 4-(14) C] aminolevulinic acid (ALA). We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Japanese encephalitis virus (JEV) is a single stranded RNA virus that infects the central nervous system leading to acute encephalitis in children. Alterations in brain endothelial cells have been shown to precede the entry of this flavivirus into the brain, but infection of endothelial cells by JEV and their consequences are still unclear. Productive JEV infection was established in human endothelial cells leading to IFN-beta and TNF-alpha production. The MHC genes for HLA-A, -B, -C and HLA-E antigens were upregulated in human brain microvascular endothelial cells, the endothelial-like cell line, ECV 304 and human foreskin fibroblasts upon JEV infection. We also report the release/shedding of soluble HLA-E (sHLA-E) from JEV infected human endothelial cells for the first time. This shedding of sHLA-E was blocked by an inhibitor of matrix metalloproteinases (MMP). In addition, MMP-9, a known mediator of HLA solubilisation was upregulated by JEV. In contrast, human fibroblasts showed only upregulation of cell-surface HLA-E. Addition of UV inactivated JEV-infected cell culture supernatants stimulated shedding of sHLA-E from uninfected ECV cells indicating a role for soluble factors/cytokines in the shedding process. Antibody mediated neutralization of TNF-alpha as well as IFNAR receptor together not only resulted in inhibition of sHLA-E shedding from uninfected cells, it also inhibited HLA-E and MMP-9 gene expression in JEV-infected cells. Shedding of sHLA-E was also observed with purified TNF-alpha and IFN-beta as well as the dsRNA analog, poly (I:C). Both IFN-beta and TNF-alpha further potentiated the shedding when added together. The role of soluble MHC antigens in JEV infection is hitherto unknown and therefore needs further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contest between the host factor APOBEC3G (A3G) and the HIV-1 protein Vif presents an attractive target of intervention. The extent to which the A3G-Vif interaction must be suppressed to tilt the balance in favor of A3G remains unknown. We employed stochastic simulations and mathematical modeling of the within-host dynamics and evolution of HIV-1 to estimate the fraction of progeny virions that must incorporate A3G to render productive infection unsustainable. Using three different approaches, we found consistently that a transition from sustained infection to suppression of productive infection occurred when the latter fraction exceeded similar to 0.8. The transition was triggered by A3G-induced hypermutations that led to premature stop codons compromising viral production and was consistent with driving the basic reproductive number, R-o, below unity. The fraction identified may serve as a quantitative guideline for strategies targeting the A3G-Vif axis. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persistent infection of hepatitis C virus (HCV) can lead to liver cirrhosis and hepatocellular carcinoma, which are currently diagnosed by invasive liver biopsy. Approximately 15-20% of cases of chronic liver diseases in India are caused by HCV infection. In North India, genotype 3 is predominant, whereas genotype 1 is predominant in southern parts of India. The aim of this study was to identify differentially regulated serum proteins in HCV-infected Indian patients (genotypes 1 and 3) using a two-dimensional electrophoresis approach. We identified eight differentially expressed proteins by MS. Expression levels of one of the highly upregulated proteins, retinol-binding protein 4 (RBP4), was validated by ELISA and Western blotting in two independent cohorts. We also confirmed our observation in the JFH1 infectious cell culture system. Interestingly, the HCV core protein enhanced RBP4 levels and partial knockdown of RBP4 had a positive impact on HCV replication, suggesting a possible role for this cellular protein in regulating HCV infection. Analysis of RBP4-interacting partners using a bioinformatic approach revealed novel insights into the possible involvement of RBP4 in HCV-induced pathogenesis. Taken together, this study provided information on the proteome profile of the HCV-infected Indian population, and revealed a link between HCV infection, RBP4 and insulin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As rapid brain development occurs during the neonatal period, environmental manipulation during this period may have a significant impact on sleep and memory functions. Moreover, rapid eye movement (REM) sleep plays an important role in integrating new information with the previously stored emotional experience. Hence, the impact of early maternal separation and isolation stress (MS) during the stress hyporesponsive period (SHRP) on fear memory retention and sleep in rats were studied. The neonatal rats were subjected to maternal separation and isolation stress during postnatal days 5-7 (6 h daily/3 d). Polysomnographic recordings and differential fear conditioning was carried out in two different sets of rats aged 2 months. The neuronal replay during REM sleep was analyzed using different parameters. MS rats showed increased time in REM stage and total sleep period also increased. MS rats showed fear generalization with increased fear memory retention than normal control (NC). The detailed analysis of the local field potentials across different time periods of REM sleep showed increased theta oscillations in the hippocampus, amygdala and cortical circuits. Our findings suggest that stress during SHRP has sensitized the hippocampus amygdala cortical loops which could be due to increased release of corticosterone that generally occurs during REM sleep. These rats when subjected to fear conditioning exhibit increased fear memory and increased, fear generalization. The development of helplessness, anxiety and sleep changes in human patients, thus, could be related to the reduced thermal, tactile and social stimulation during SHRP on brain plasticity and fear memory functions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Productive infection of human amniotic and endothelial cell lines with Japanese encephalitis virus (JEV) was established leading to the induction of NF kappa B and HLA-F, a non-classical MHC molecule. Induction of the HLA-F gene and protein in JEV-infected cells was shown to be NF kappa B dependent since it was blocked by inhibitors of NF kappa B activation. ShRNA targeting lentivirus-mediated stable knockdown of the p65 subunit of NF kappa B inhibited JEV-mediated induction of HLA-F both in the amniotic cell line, AV-3 as well as the human brain microendothelial cell line, HBMEC. The induction of HLA-F by treatment of AV-3 with TNF-alpha was also inhibited by ShRNA mediated knockdown of NF kappa B. TNF-alpha treatment of HEK293T cells that were transfected with reporter plasmids under the control of HLA-F enhancer A elements resulted in significant transactivation of the luciferase reporter gene. NF kappa B-mediated induction of HLA-F following JEV infection and TNF-alpha exposure is being suggested for the first time. (C) 2014 Elsevier Inc. All rights reserved.