76 resultados para Marmoset Monkey
Resumo:
A major limitation to progress in primate embryology is the lack of an adequate supply of preimplantation embryos. We describe a method for recovering preimplantation-embryos in bonnet monkeys (Macaca radiata ) using a nonsurgical uterine flushing technique similar to the one previously employed in rhesus monkeys. Forty cyclic females were screened for cervical cannulation, and 10% of these had an impassable cervix. Eleven females suitable for cannulation were selected, and 27 menstrual cycles were monitored over a 5-mo period. Seventy-one percent of the cycles showed estrogen peaks, which were observed between Days 9 and 14 of the cycle. Following natural mating, uterine flushings were performed on Days 5 to 8 of pregnancy (Day 0 = the day following the estrogen peak). Of the 27 recovery attempts, 9 (33.3%) resulted in the recovery of ovulation products, including those of an unfertilized oocyte and empty zona (2 cases), retarded cleavage-stage (4 to 8-cell) embryos (4 cases), morula (1 case) and blastocysts (2 cases). These results show, for the first time, that the nonsurgical uterine flushing technique can be successfully performed to recover uterine-stage preimplantation embryos from bonnet monkeys.
Resumo:
Administration of norethisterone (NET) or NET + estradiol benzoate using an Alzet minipump or as once-a-month intramuscular injection of their depot forms, NET-enanthate (NET-EN) and estradiol valerate (E-val), resulted in azoospermia in all monkeys (n = 13) within 60 to 150 days of treatment. Although addition of depot form of testosterone (T, 20 mg/month) to the regimen restored the behavioral response typical of a normal male, it did not reverse the azoospermic state. Serum T (heightened nocturnal) levels were significantly reduced (> 85%, p < 0.001) in all the treated groups. Evidence for blockade in spermatogenesis following treatment was obtained by DNA flow cytometry. Following withdrawal of treatment, the T level was restored to normalcy within 15 days but 120 days more were required for the animals to exhibit normal sperm counts. In conclusion, the efficacy of once-a-month injection of relatively low doses of NET-EN + E-Val to bring about azoospermia in monkeys, in a relatively short time, has been demonstrated. As the results are uniform and reproducible, it appears desirable that this steroid regimen be tested in man for its contraceptive efficacy.
Resumo:
A study has been carried out on the non-specific interference due to serum in the avidin biotin micro-ELISA for monkey chorionic gonadotropin. Results suggest that it is not due to any proteolytic activity in the serum, but immunoglobulin or associated factors interfering at the level of antigen-antibody interaction. This interference was eliminated by heating samples at 60°C for 30 min.
Resumo:
Changes in MAPK activities were examined in the corpus luteum (CL) during luteolysis and pregnancy, employing GnRH antagonist (Cetrorelix)-induced luteolysis, stages of CL, and hCG treatment to mimic early pregnancy as model systems in the bonnet monkey. We hypothesized that MAPKs could serve to phosphorylate critical phosphoproteins to regulate luteal function. Analysis of several indices for structural (caspase-3 activity and DNA fragmentation) and functional (progesterone and steroidogenic acute regulatory protein expression) changes in the CL revealed that the decreased luteal function observed during Cetrorelix treatment and late luteal phase was associated with increased caspase-3 activity and DNA fragmentation. As expected, human chorionic gonadotropin treatment dramatically increased luteal function, but the indices for structural changes were only partially attenuated. All three MAPKs appeared to be constitutively active in the mid-luteal-phase CL, and activities of ERK-1/2 and p38-MAPK (p38), but not Jun N-terminal kinase (JNK)-1/2, decreased significantly (P < 0.05) within 12 - 24 h after Cetrorelix treatment. During the late luteal phase, in contrast to decreased ERK-1/2 and p38 activities, JNK-1/2 activities increased significantly (P < 0.05). Although human chorionic gonadotropin treatment increased ERK-1/2 and p38 activities, it decreased JNK-1/2 activities. The activation status of p38 was correlated with the phosphorylation status of an upstream activator, MAPK kinase-3/6 and the expression of MAPK activated protein kinase-3, a downstream target. Intraluteal administration of p38 kinase inhibitor (SB203580), but not MAPK kinase-1/2 inhibitor (PD98059), decreased the luteal function. Together, these data suggest an important role for p38 in the regulation of CL function in primates.
Resumo:
The positive homotropic binding of tetrahydrofolate to monkey liver serine hydroxymethyltransferase was abolished on preincubating the enzyme with NADH and NADPH. NAD+ was a negative heterotropic effector, whereas NADP+ was without effect. The allosteric effects of nicotinamide nucleotides on the serine hydroxymethyltransferase, reported for the first time, lead to a better understanding of the regulation of the metabolic interconversion of folate coenzymes.
Use of gonadotropin and steroid hormone antibodies in studying specific hormone action in the monkey
Resumo:
Female bonnet monkeys were injected i.v. with 25 µl antiserum to FSH on Days 5, 6 or 7 of the cycle: the length of the luteal phase was shortened but there was no alteration in cycle length. Proven fertile females (N = 6) were caged throughout the period of the experiment (6 cycles) with proven fertile males and treated with 25 µl FSH antiserum on Day 7 of each of 3 successive cycles. Out of 18 cycle exposures during the treatment phase, 17 were ovulatory, but no pregnancies occurred. In the post-treatment phase, 5 monkeys became pregnant within 3 cycle exposures. These results show that it is possible to render female monkeys infertile by creating luteal insufficiency and this can be achieved repeatedly in a reproducible manner by depriving the cyclic females of FSH support on Day 7 of consecutive cycles.
Resumo:
Objective: To study the efficacy of long-term buserelin acetate infusion to desensitize pituitary and block testicular function in adult male monkeys (Macaca radiata). Animals: Proven fertile male monkeys exhibiting normal testicular function. Protocol: Each of the control (n = 5) and experimental monkeys (n = 10) received a fresh miniosmotic pump every 21 days, whereas pumps in controls delivered vehicle of experimentals released 50-mu-g buserelin acetate every 24 hours. On day 170 (renewed every 60 days) a silastic capsule containing crystalline testosterone (T) was implanted in the experimental monkeys. At the end of 3 years, treatment was stopped, and recovery of testicular function and fertility monitored. Results: (1) Treatment resulted in marked reduction of nocturnal but not basal serum T; (2) the pituitary remained desensitized to buserelin acetate throughout the 3-year period; (3) animals were largely azoospermic with occasional oligospermia exhibited by two monkeys; and (4) withdrawal of treatment restored testicular function, with 70% of animals regaining fertility. Conclusion: Long-term infertility (but restorable) can be induced in male monkeys by constant infusion of buserelin acetate and T.
Resumo:
The effect of chronic infusion of gonadotropic hormone agonist Buserelin or antagonist CDB 2085 A for 15 weeks via alzet minipumps in adult male bonnet monkeys was studied. Infusion of Buserelin resulted in a decrease in the difference between serum testosterone values at 22.00 hours and 10.00 hours, decrease in responsiveness to injected Buserelin as judged by change in serum testosterone values from pre-injection values and decrease in sperm counts. Infusion of antagonist resulted in a decrease in the difference between serum testosterone values at 22.00 hours and 10.00 hours.
Resumo:
The requirement for estrogen for pregnancy establishment has not been conclusively demonstrated in primates. Selective neutralization of estrogens was achieved in mated female monkeys during preimplantation and postimplantation periods by injecting characterized estrogen antiserum from either day 14 to 18 or day 28 to 32 of cycle. While estrogen deprivation during preimplantation period in 5 animals exposed to 14 ovulatory cycles resulted in only one pregnancy, only 3 of 13 monkeys treated during postimplantation period continued pregnancy to term. In comparison with controls (4 of 5 monkeys becoming pregnant), the percent protection against pregnancy in animals treated during preimplantation period was 93. The pregnancy termination in 10 of 13 monkeys treated during postimplantation period when compared with normal postimplantation pregnancy wastage in our colony (2%) is also highly significant (P less than 0.01). The present study demonstrates a critical need for estrogen during the peri-implantation period for a successful pregnancy establishment in primates.
Resumo:
The role of FSH and diurnal testosterone rhythms in specific germ cell transformations during spermatogenesis were investigated using DNA flow cytometry and morphometry of the seminiferous epithelium of the adult male bonnet monkey (Macaca radiata), the endogenous hormone levels of which were altered by two different protocols. (1) Active immunization of five monkeys for 290 days using ovine FSH adsorbed on Alhydrogel resulted in the neutralization of endogenous FSH, leaving the LH and diurnal testosterone rhythms normal. (2) Desensitization of the pituitary gonadotrophs of ten monkeys by chronically infusing gonadotrophin-releasing hormone analogue, buserelin (50 micrograms/day release rate), via an Alzet pump implant (s.c.) led to a 60-80% reduction in LH and FSH as well as total abolition of testosterone rhythms. The basal testosterone level (3.3 +/- 2.0 micrograms/l), however, was maintained in this group by way of an s.c. testosterone silicone elastomer implant. Both of the treatments caused significant (P < 0.01) nearly identical reduction in testicular biopsy scores, mitotic indices and daily sperm production rates compared with respective controls. The germ cell DNA flow cytometric profiles of the two treatment groups, however, were fundamentally different from each other. The pituitary-desensitized group exhibited a significant (P < 0.001) increase in 2C (spermatogonial) and decrease in 1C (round spermatid) populations while S-phase (preleptotene spermatocytes) and 4C (primary spermatocytes) populations were normal, indicating an arrest in meiosis caused presumably by the lack of increment in nocturnal serum testosterone. In contrast, in the FSH-immunized group, at day 80 when the FSH deprivation was total, the primary block appeared to be at the conversion of spermatogonia (2C) to cells in S-phase and primary spermatocytes (4C reduced by > 90%). In addition, at this time, although the round spermatid (1C) population was reduced by 65% (P < 0.01) the elongate spermatid (HC) population showed an increase of 52% (P < 0.05). This, taken together with the fact that sperm output in the ejaculate is reduced by 80%, suggests a blockade in spermiogenesis and spermiation. Administration of booster injections of oFSH at time-points at which the antibody titre was markedly low (at days 84 and 180) resulted in a transient resurgence in spermatogenesis (at day 180 and 228), and this again was blocked by day 290 when the FSH antibody titre increased.
Resumo:
The aim of the present study was to examine the effect of hemiorchidectomy (HO) on serum FSH, LH, testosterone (T), and inhibin (INH) concentrations as well as on the testicular volume (TV) and on changes in the kinetics of germ cell turnovers in the remaining testis of adult male bonnet monkeys. Blood samples collected at 2200 h at various times before and after HO and testicular biopsies obtained at different periods were subjected to hormone analysis and DNA flow cytometry. Though serum T levels were lowered (p < 0.05) at 12 h after HO, T levels rapidly returned to intact control concentrations by Day 5. While serum LH remained unaltered, serum FSH increased markedly within 2 days of HO and remained significantly (p < 0.05) elevated over the next 90 days. Though serum INH showed a significant decrease (p < 0.05) by 15 min of HO, it returned to approximately 80% of intact levels within one week. The TV of the remaining testis showed maximal increment by Day 30 (p < 0.05) of HO. DNA flow cytometric analysis 24 days after HO showed increases (p < 0.05) in spermatogonia (2C) and primary spermatocytes (4C). These cell types by Day 45 had transformed to round (1C) and elongate (HC) (by 38%, p < 0.001) spermatids. Overall spermatogenesis (conversion of 2C to 1C and HC) showed significant enhancement at Days 110 and 175, suggesting that the spurt in spermatogenic activity is not confined to a single spermatogenic cycle.
Resumo:
Background: In higher primates, although LH/CG play a critical role in the control of corpus luteum (CL) function, the direct effects of progesterone (P4) in the maintenance of CL structure and function are unclear. Several experiments were conducted in the bonnet monkey to examine direct effects of P4 on gene expression changes in the CL, during induced luteolysis and the late luteal phase of natural cycles. Methods: To identify differentially expressed genes encoding PR, PR binding factors, cofactors and PR downstream signaling target genes, the genome-wide analysis data generated in CL of monkeys after LH/P-4 depletion and LH replacement were mined and validated by real-time RT-PCR analysis. Initially, expression of these P4 related genes were determined in CL during different stages of luteal phase. The recently reported model system of induced luteolysis, yet capable of responsive to tropic support, afforded an ideal situation to examine direct effects of P4 on structure and function of CL. For this purpose, P4 was infused via ALZET pumps into monkeys 24 h after LH/P4 depletion to maintain mid luteal phase circulating P4 concentration (P4 replacement). In another experiment, exogenous P4 was supplemented during late luteal phase to mimic early pregnancy. Results: Based on the published microarray data, 45 genes were identified to be commonly regulated by LH and P4. From these 19 genes belonging to PR signaling were selected to determine their expression in LH/P-4 depletion and P4 replacement experiments. These 19 genes when analyzed revealed 8 genes to be directly responsive to P4, whereas the other genes to be regulated by both LH and P4. Progesterone supplementation for 24 h during the late luteal phase also showed changes in expression of 17 out of 19 genes examined. Conclusion: These results taken together suggest that P4 regulates, directly or indirectly, expression of a number of genes involved in the CL structure and function.