26 resultados para Manufacturing processes.
Resumo:
Friction has an important influence in metal forming operations, as it contributes to the success or otherwise of the process. In the present investigation, the effect of friction on metal forming was studied by simulating compression tests on cylindrical Al-Mg alloy using the finite element method (FEM) technique. Three kinds of compression tests were considered wherein a constant coefficient of friction was employed at the upper die-work-piece interface. However, the coefficient of friction between the lower die-work-piece interfaces was varied in the tests. The simulation results showed that a difference in metal flow occurs near the interfaces owing to the differences in the coefficient of friction. It was concluded that the variations in the coefficient of friction between the dies and the work-piece directly affect the stress distribution and shape of the work-piece, having implications on the microstructure of the material being processed.
Resumo:
The sputter deposition of YBa2Cu3O7-x in a de-diode was performed in pure oxygen medium and an optical spectroscopic study of the resultant discharge revealed strong emissions from both metal atoms and oxygen ions. Emission intensities were studied in pressure range from 0.5 to 3 mbar, with substrate temperatures from 150 to 850 degrees C. Raising the substrate temperature to 850 degrees C increased the number of positive ions and excited neutral atoms. Raising the pressure decreased the emission intensities of excited neutral and ionic species. The results have been compared with those obtained from Langmuir probe measurements. The rise in emission intensities of excited neutrals and ions with temperature suggested the possibility of chemically enhanced physical sputtering of YBa2Cu3O7-x. The effect of process conditions on film composition and quality is also discussed.
Resumo:
The thermal degradation processes of two sulfur polymers, poly(xylylene sulfide) (PXM) and poly(xylylene disulfide) (PXD), were investigated in parallel by direct pyrolysis mass spectrometry (DPMS) and flash pyrolysis GC/MS (Py-GC/MS). Thermogravimetric data showed that these polymers decompose with two separate steps in the temperature ranges of 250-280 and 600-650 degrees C, leaving a high amount of residue (about 50% at 800 degrees C). The pyrolysis products detected by DPMS in the first degradation step of PXM and PXD were terminated by three types of end groups, -CH3, -CH2SH, and -CH=S, originating from thermal cleavage reactions involving a series of homolytic chain scissions followed by hydrogen transfer reactions, generating several oligomers containing some intact xylylene sulfide repeating units. The presence of pyrolysis compounds containing some stilbene-like units in the first degradation step has also been observed. Their formation has been accounted for with a parallel cleavage involving the elimination of H2S from the PXM main chains. These unsaturated units can undergo cross-linking at higher temperatures, producing the high amount of char residue observed. The thermal degradation compounds detected by DPMS in the second decomposition step at about 600-650 degrees C were constituted of condensed aromatic molecules containing dihydrofenanthrene and fenanthrene units. These compounds might be generated from the polymer chains containing stilbene units, by isomerization and dehydrogenation reactions. The pyrolysis products obtained in the Py-GC/MS of PXM and PXD at 610 degrees C are almost identical. The relative abundance in the pyrolysate and the spectral properties of the main pyrolysis products were found to be in generally good agreement with those obtained by DPMS. Polycyclic aromatic hydrocarbons (PAHs) were also detected by Py-GC/MS but in minor amounts with respect to DPMS. This apparent discrepancy was due to the simultaneous detection of PAHs together with all pyrolysis products in the Py-GC/MS, whereas in DPMS they were detected in the second thermal degradation step without the greatest part of pyrolysis compounds generated in the first degradation step. The results obtained by DPMS and PSI-GC/MS experiments showed complementary data for the degradation of PXM and PXD and, therefore, allowed the unequivocal formulation of the thermal degradation mechanism for these sulfur-containing polymers.
Resumo:
Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. The product yield is very low. Heat transfer plays an important role in the formation of boron carbide. Temperature at the core reaches up to 2600 K. No experimental study is available in the open literature for this high temperature process particularly in terms of temperature measurement and heat transfer. Therefore, a laboratory scale hot model of the process has been setup to measure the temperatures in harsh conditions at different locations in the furnace using various temperature measurement devices such as pyrometer and various types of thermocouple. Particular attention was paid towards the accuracy and reliability of the measured data. The recorded data were analysed to understand the heat transfer process inside the reactor and the effect of it on the formation of boron carbide.
Resumo:
This splitting techniques for MARKOV chains developed by NUMMELIN (1978a) and ATHREYA and NEY (1978b) are used to derive an imbedded renewal process in WOLD's point process with MARKOV-correlated intervals. This leads to a simple proof of renewal theorems for such processes. In particular, a key renewal theorem is proved, from which analogues to both BLACKWELL's and BREIMAN's forms of the renewal theorem can be deduced.
Resumo:
We report here that the structural origin of an easily reversible Ge15Te83Si2 glass can be a promising candidate for phase change random access memories. In situ Raman scattering studies on Ge15Te83Si2 sample, undertaken during the amorphous set and reset processes, indicate that the degree of disorder in the glass is reduced from off to set state. It is also found that the local structure of the sample under reset condition is similar to that in the amorphous off state. Electron microscopic studies on switched samples indicate the formation of nanometric sized particles of c-SiTe2 structure. ©2009 American Institute of Physics
Resumo:
Plywood manufacture includes two fundamental stages. The first is to peel or separate logs into veneer sheets of different thicknesses. The second is to assemble veneer sheets into finished plywood products. At the first stage a decision must be made as to the number of different veneer thicknesses to be peeled and what these thicknesses should be. At the second stage, choices must be made as to how these veneers will be assembled into final products to meet certain constraints while minimizing wood loss. These decisions present a fundamental management dilemma. Costs of peeling, drying, storage, handling, etc. can be reduced by decreasing the number of veneer thicknesses peeled. However, a reduced set of thickness options may make it infeasible to produce the variety of products demanded by the market or increase wood loss by requiring less efficient selection of thicknesses for assembly. In this paper the joint problem of veneer choice and plywood construction is formulated as a nonlinear integer programming problem. A relatively simple optimal solution procedure is developed that exploits special problem structure. This procedure is examined on data from a British Columbia plywood mill. Restricted to the existing set of veneer thicknesses and plywood designs used by that mill, the procedure generated a solution that reduced wood loss by 79 percent, thereby increasing net revenue by 6.86 percent. Additional experiments were performed that examined the consequences of changing the number of veneer thicknesses used. Extensions are discussed that permit the consideration of more than one wood species.
Resumo:
Abstract is not available.
Resumo:
A new shock wave generator has been designed, fabricated and tested for preservative impregnation studies into wood slats used for manufacturing pencils in the Shock Waves Laboratory, IISc, Bangalore. Series of experiments have been carried out in the laboratory to achieve satisfactory preservative impregnation into VATTA wood slats. The experiments have shown that it is indeed possible to impregnate preservatives into VATTA wood slats using shock waves and the depth of penetration and the retention of preservatives by wood slats is as good as the conventional methods. This method is expected to result in substantial reduction in the treatment process time compared to conventional methods that are currently being used by the pencil manufacturing industry.
Resumo:
A non-linear model, construed as a generalized version of the models put forth earlier for the study of bi-state social interaction processes, is proposed in this study. The feasibility of deriving the dynamics of such processes is demonstrated by establishing equivalence between the non-linear model and a higher order linear model.
Resumo:
Sufficient conditions for obtaining an equivalent linear model to classes of non-linear, bi-state, social interaction processes are derived. These parametric constraints, when satisfied, permit analytical determination of the dynamics of the non-linear process of social interaction.