34 resultados para Machine translation system
Resumo:
In this paper, we describe a system for the automatic recognition of isolated handwritten Devanagari characters obtained by linearizing consonant conjuncts. Owing to the large number of characters and resulting demands on data acquisition, we use structural recognition techniques to reduce some characters to others. The residual characters are then classified using the subspace method. Finally the results of structural recognition and feature-based matching are mapped to give final output. The proposed system Ifs evaluated for the writer dependent scenario.
Resumo:
The performance of a plate clutch in a two-inertia power transmission system is analysed assuming negligible compliance and using a piecewise linear function to represent the clutch torque characteristic. Expressions defining, for all linear segments of the clutch torque characteristic, dimensionless input and output velocities of the clutch and dimensionless slip period are presented. The use of these expressions in preparing design charts to aid analysis and design of the plate clutch is outlined.
Resumo:
This paper proposes a Single Network Adaptive Critic (SNAC) based Power System Stabilizer (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a Single Machine Infinite Bus test system for various system and loading conditions. The proposed stabilizer, which is relatively easier to synthesize, consistently outperformed stabilizers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
This paper mainly concentrates on the application of the direct torque control (DTC) technique for the induction machine based integrated startergenerator (ISG) for automobile applications. It also discusses in brief about the higher DC bus voltage requirements in the automobiles i.e. present 14V system vs. 42V system to meet the power requirements, modes of operation of ISG, electric machine and the drive selection for the ISG,description of DTC technique, simulation and experimental results, and implementation.
Resumo:
This paper proposes a method of designing fixed parameter decentralized power system stabilizers (PSS) for interconnected multi-machine power systems. Conventional design technique using a single machine infinite bus approximation involves the frequency response estimation called the GEP(s) between the AVR input and the resultant electrical torque. This requires the knowledge of equivalent external reactance and infinite bus voltage or their estimated values at each machine. Other design techniques using P-Vr characteristics or residues are based on complete system information. In the proposed method, information available at the high voltage bus of the step-up transformer is used to set up a modified Heffron-Phillip's model. With this model it is possible to decide the structure of the PSS compensator and tune its parameters at each machine in the multi-machine environment, using only those signals that are available at the generating station. The efficacy of the proposed design technique has been evaluated on three of the most widely used test systems. The simulation results have shown that the performance of the proposed stabilizer is comparable to that which could be obtained by conventional design but without the need for the estimation and computation of external system parameters.
Resumo:
This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT (N-1)(60)] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters (N-1)(60) and peck ground acceleration (a(max)/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.
Resumo:
This paper presents the design of a full fledged OCR system for printed Kannada text. The machine recognition of Kannada characters is difficult due to similarity in the shapes of different characters, script complexity and non-uniqueness in the representation of diacritics. The document image is subject to line segmentation, word segmentation and zone detection. From the zonal information, base characters, vowel modifiers and consonant conjucts are separated. Knowledge based approach is employed for recognizing the base characters. Various features are employed for recognising the characters. These include the coefficients of the Discrete Cosine Transform, Discrete Wavelet Transform and Karhunen-Louve Transform. These features are fed to different classifiers. Structural features are used in the subsequent levels to discriminate confused characters. Use of structural features, increases recognition rate from 93% to 98%. Apart from the classical pattern classification technique of nearest neighbour, Artificial Neural Network (ANN) based classifiers like Back Propogation and Radial Basis Function (RBF) Networks have also been studied. The ANN classifiers are trained in supervised mode using the transform features. Highest recognition rate of 99% is obtained with RBF using second level approximation coefficients of Haar wavelets as the features on presegmented base characters.
Resumo:
The decision-making process for machine-tool selection and operation allocation in a flexible manufacturing system (FMS) usually involves multiple conflicting objectives. Thus, a fuzzy goal-programming model can be effectively applied to this decision problem. The paper addresses application of a fuzzy goal-programming concept to model the problem of machine-tool selection and operation allocation with explicit considerations given to objectives of minimizing the total cost of machining operation, material handling and set-up. The constraints pertaining to the capacity of machines, tool magazine and tool life are included in the model. A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy goal-programming model. An illustrative example is provided and some results of computational experiments are reported.
Resumo:
In this paper, a wind energy conversion system (WECS) using grid-connected wound rotor induction machine controlled from the rotor side is compared with both fixed speed and variable speed systems using cage rotor induction machine. The comparison is done on the basis of (I) major hardware components required, (II) operating region, and (III) energy output due to a defined wind function using the characteristics of a practical wind turbine. Although a fixed speed system is more simple and reliable, it severely limits the energy output of a wind turbine. In case of variable speed systems, comparison shows that using a wound rotor induction machine of similar rating can significantly enhance energy capture. This comes about due to the ability to operate with rated torque even at supersynchronous speeds; power is then generated out of the rotor as well as the stator. Moreover, with rotor side control, the voltage rating of the power devices and dc bus capacitor bank is reduced. The size of the line side inductor also decreasesd. Results are presented to show the substantial advantages of the doubly fed system.
Resumo:
In this paper, a method of tracking the peak power in a wind energy conversion system (WECS) is proposed, which is independent of the turbine parameters and air density. The algorithm searches for the peak power by varying the speed in the desired direction. The generator is operated in the speed control mode with the speed reference being dynamically modified in accordance with the magnitude and direction of change of active power. The peak power points in the P-omega curve correspond to dP/domega = 0. This fact is made use of in the optimum point search algorithm. The generator considered is a wound rotor induction machine whose stator is connected directly to the grid and the rotor is fed through back-to-back pulse-width-modulation (PWM) converters. Stator flux-oriented vector control is applied to control the active and reactive current loops independently. The turbine characteristics are generated by a dc motor fed from a commercial dc drive. All of the control loops are executed by a single-chip digital signal processor (DSP) controller TMS320F240. Experimental results show that the performance of the control algorithm compares well with the conventional torque control method.
Resumo:
Computational studies of the transient stability of a synchronous machine connected to an infinite busbar by a double-circuit transmission line are used to illustrate the effect of relative phase-shift insertion between the machine and its associated power system. This method of obtaining a change in the effective rotor-excitation angle, and thereby the power transfer, is described, together with an outline of possible methods of implementation by a phase-shifting transformer in a power system.
Resumo:
The design of machine foundations are done on the basis of two principal criteria viz., vibration amplitude should be within the permissible limits and natural frequency of machine-foundation-soil system should be away from the operating frequency (i.e. avoidance of resonance condition). In this paper the nondimensional amplitude factor M-m or M-r m and the nondimensional frequency factor a(o m) at resonance are related using elastic half space theory and is used as a new approach for a simplified design procedure for the design of machine foundations for all the modes of vibration fiz. vertical, horizontal, rocking and torsional for rigid base pressure distribution and weighted average displacement condition. The analysis show that one need not know the value of Poisson's ratio for rotating mass system for all the modes of vibration.
Resumo:
In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.
Resumo:
This paper presents a fast and accurate relaying technique for a long 765kv UHV transmission line based on support vector machine. For a long EHV/UHV transmission line with large distributed capacitance, a traditional distance relay which uses a lumped parameter model of the transmission line can cause malfunction of the relay. With a frequency of 1kHz, 1/4th cycle of instantaneous values of currents and voltages of all phases at the relying end are fed to Support Vector Machine(SVM). The SVM detects fault type accurately using 3 milliseconds of post-fault data and reduces the fault clearing time which improves the system stability and power transfer capability. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the Electromagnetic Transients Program(EMTP) developed by authors in which the distributed parameter line model is used. More than 15,000 different short circuit fault cases are simulated by varying fault location, fault impedance, fault incidence angle and fault type to train the SVM for high speed accurate relaying. Simulation studies have shown that the proposed relay provides fast and accurate protection irrespective of fault location, fault impedance, incidence time of fault and fault type. And also the proposed scheme can be used as augmentation for the existing relaying, particularly for Zone-2, Zone-3 protection.
Resumo:
This paper presents a multi-class support vector machine (SVMs) approach for locating and diagnosing faults in electric power distribution feeders with the penetration of Distributed Generations (DGs). The proposed approach is based on the three phase voltage and current measurements which are available at all the sources i.e. substation and at the connection points of DG. To illustrate the proposed methodology, a practical distribution feeder emanating from 132/11kV-grid substation in India with loads and suitable number of DGs at different locations is considered. To show the effectiveness of the proposed methodology, practical situations in distribution systems (DS) such as all types of faults with a wide range of varying fault locations, source short circuit (SSC) levels and fault impedances are considered for studies. The proposed fault location scheme is capable of accurately identify the fault type, location of faulted feeder section and the fault impedance. The results demonstrate the feasibility of applying the proposed method in practical in smart grid distribution automation (DA) for fault diagnosis.