64 resultados para MUSCLE PROTEIN-SYNTHESIS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The kinetics of estrogen-induced accumulation of riboflavin-carrier protein in the plasma was investigated in immature male rats using a specific and sensitive homologous radio-immunoassay procedure developed for this purpose. Following a single injection of the steroid hormone, plasma riboflavin-carrier protein levels increased markedly after an initial lag period of approximately 24 h, reaching peak levels around 96 h and declining thereafter. A 1.5 fold amplification of the inductive response was evident on secondary stimulation with the hormone. The magnitude of the response was dependent on hormonal dose, whereas the initial lag phase and the time of peak riboflavin-carrier protein induction were unaltered within the range of the steroid doses (0.1–10 mg/ kg body wt.) tested. Simultaneous administration of progesterone did not affect either the kinetics or the maximum level of the protein induced. The hormonal specificity of this induction was further adduced by the effect of administration of antiestrogens viz., En and Zu chlomiphene citrates, which effectively curtailed hormonal induction of the protein. That the induction involvedde novo-protein synthesis was evident from the complete inhibition obtained upon administration of cycloheximide. Passive immunoneutralization of endogenous riboflavin-carrier protein with antiserum to the homologous protein terminated pregnancy in rats confirming the earlier results with antiserum to chicken riboflavin-carrier protein.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Isoleucyl-tRNA synthetase has been purified to homogeneity from Mycobacterium smegmatis. The influence of spermine on the kinetics of valyl-tRNA and isoleucyl-tRNA formation has been investigated by Cleland's method (Cleland, W.W. (1963) Biochim. Biophys. Acta 67, 104–137, 173–187, 188–196). The results suggest that in the presence of spermine and suboptimal concentration of Mg2+, the formation of valyl-tRNA and isoleucyl-tRNA follows a sequential* mechanism. In the presence of an optimal concentration of Mg2+, both valyl-tRNA and isoleucyl-tRNA formation proceeds by a ping-pong mechanism. However, in the presence of spermine and optimal concentrations of Mg2+, valyl-tRNA formation follows the ping-pong mechanism while isoleucyl-tRNA formation follows the sequential mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of heme in the synthesis of cytochrome c oxidase has been investigated in the mold Neurospora crassa. Iron-deficient cultures of the mold have low levels of cytochrome oxidase and delta-aminolevulinate dehydratase, the latter being the rate-limiting enzyme of the heme-biosynthetic pathway in this organism. Addition of iron to the iron-deficient cultures results in an immediate increase in the levels of delta-aminolevulinate dehydratase followed by an increase in the rate of heme synthesis and cytochrome oxidase levels. The rate of precursor labeling of the mitochondrial subunits of cytochrome oxidase is decreased preferentially under conditions of iron deficiency and addition of iron corrects this picture. Exogenous hemin addition which prevents iron-mediated induction of delta-aminolevulinate dehydratase also inhibits the increase in the activity of cytochrome oxidase and the enhanced precursor labeling of the mitochondrial subunits of cytochrome oxidase. Protein synthesis on mitoribosomes measured in vivo and in vitro is decreased under conditions of heme deficiency. Hemin addition in vitro to mitochondrial lysates prepared from heme-deficient mycelia restores a near normal rate of protein synthesis. It is concluded that heme is required for the optimal rate of translation on mitoribosomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DNA-, RNA- and protein synthesis have been studied inMycobacterium smegmatis cells infected with phage 13. The macromolecular synthesis continued until the end of latent period. Early RNA and protein synthesis were necessary prior to the commencement of DNA replication. The infecting phage DNA sedimented as larger than unit length of genome, after initiation of DNA synthesis. Although the host DNA was not degraded, 90 percent of the RNA synthesized after phage infection hybridized to phage DNA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Kinetic data on inhibition of protein synthesis in thymocyte by three abrins and ricin have been obtained. The intrinsic efficiencies of A chains of four toxins to inactivate ribosomes, as analyzed by k1-versus-concentration plots were abrin II, III > ricin > abrin I. The lag times were 90, 66, 75 and 105 min at a 0.0744 nM concentration of each of abrin I, II, III and ricin, respectively. To account for the observed differences in the dose-dependent lag time, functional and structural variables of toxins such as binding efficiency of B chains to receptors and low-pH-induced structural alterations have been analyzed. The association constants obtained by stopped flow studies showed that abrin-I (4.13 × 105 M−1 s−1) association with putative receptor (4-methylumbelliferyl-α-D-galactoside) is nearly two times more often than abrin III (2.6 × 105 M−1 s−1) at 20°C. Equillibrium binding constants of abrin I and II to thymocyte at 37°C were 2.26 × 107 M−1 and 2.8 × 107 M−1 respectively. pH-induced structural alterations as studied by a parallel enhancement in 8-anilino-L-naphthalene sulfonate fluorescence revealed a high degree of qualitative similarity. These results taken with a nearly identical concentration-independent lag time (minimum lag of 41–42 min) indicated that the binding efficiencies and internalization efficiencies of these toxins are the same and that the observed difference in the dose-dependent lag time is causally related to the proposed processing event. The rates of reduction of inter-subunit disulfide bond, an obligatory step in the intoxication process, have been measured and compared under a variety of conditions. Intersubunit disulfide reduction of abrin I is fourfold faster than that of abrin II at pH 7.2. The rate of disulfide reduction in abrin I could be decreased 1 I-fold by adding lactose, compared to that without lactose. The observed differences in the efficiencies of A chains, the dose-dependent lag period, the modulating effect of lactose on the rates of disulfide reduction and similarity in binding properties make the variants a valuable tool to probe the processing events in toxin transport in detail.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cell cycle phase at starvation influences post-starvation differentiation and morphogenesis in Dictyostelium discoideum. We found that when expressed in Saccharomyces cerevisiae, a D. discoideum cDNA that encodes the ribosomal protein S4 (DdS4) rescues mutations in the cell cycle genes cdc24, cdc42 and bem1. The products of these genes affect morphogenesis in yeast via a coordinated moulding of the cytoskeleton during bud site selection. D. discoideum cells that over-or under-expressed DdS4 did not show detectable changes in protein synthesis but displayed similar developmental aberrations whose intensity was graded with the extent of over-or under-expression. This suggested that DdS4 might influence morphogenesis via a stoichiometric effect - specifically, by taking part in a multimeric complex similar to the one involving Cdc24p, Cdc42p and Bem1p in yeast. In support of the hypothesis, the S. cerevisiae proteins Cdc24p, Cdc42p and Bem1p as well as their D. discoideum cognates could be co-precipitated with antibodies to DdS4. Computational analysis and mutational studies explained these findings: a C-terminal domain of DdS4 is the functional equivalent of an SH3 domain in the yeast scaffold protein Bem1p that is central to constructing the bud site selection complex. Thus in addition to being part of the ribosome, DdS4 has a second function, also as part of a multi-protein complex. We speculate that the existence of the second role can act as a safeguard against perturbations to ribosome function caused by spontaneous variations in DdS4 levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ribosomal RNA (rRNA) contains a number of modified nucleosides in functionally important regions including the intersubunit bridge regions. As the activity of ribosome recycling factor (RRF) in separating the large and the small subunits of the ribosome involves disruption of intersubunit bridges, we investigated the impact of rRNA methylations on ribosome recycling. We show that deficiency of rRNA methylations, especially at positions 1518 and 1519 of 16S rRNA near the interface with the 50S subunit and in the vicinity of the IF3 binding site, adversely affects the efficiency of RRF-mediated ribosome recycling. In addition, we show that a compromise in the RRF activity affords increased initiation with a mutant tRNA(fMet) wherein the three consecutive G-C base pairs ((29)GGG(31):39CCC41), a highly conserved feature of the initiator tRNAs, were mutated to those found in the elongator tRNA(Met) ((29)UCA(31):(39)psi GA(41)). This observation has allowed us to uncover a new role of RRF as a factor that contributes to fidelity of initiator tRNA selection on the ribosome. We discuss these and earlier findings to propose that RRF plays a crucial role during all the steps of protein synthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gelonin inhibits protein synthesis by inactivating the eukaryotic 60 S ribosomal subunit by an unknown mechanism. The protein was purified in high yield by a new method using Cibacron blue F3GA-Sepharose. Chemical modification studies reveal that arginine residues are essential for biological activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The incorporation of sucrose into the thermophilic fungus,Thermomyces lanuginosus, occurred only in mycelia previously exposed to sucrose or raffinose. Sucrose uptake and invertase were inducible. Both activities appeared in sucrose-induced mycelia at about the same time. Both activities declined almost simultaneously following the exhaustion of sucrose in the medium. The sucrose-induced uptake system was specific for \beta -fructofuranosides as revealed by competition with various sugars. The induction of sucrose uptake system was blocked by cycloheximide, showing that it was dependent on new protein synthesis. Transport of sucrose did not seem to be dependent on ATP. Rather, uptake of this sugar seemed to be driven by a proton gradient across the plasma membrane. The uptake system showed Michaelis-Menten kinetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exposure of rats to heat (39 +/- 1 degree C) decreased H2O2 generation in mitochondria of the liver, but not of the kidney or the heart. The effect was obtained with three substrates, succinate, glycerol 1-phosphate and choline, with a decrease to 50% in the first 2-3 days of exposure, and a further decrease on longer exposure. The dehydrogenase activity with only glycerol 1-phosphate decreased, which is indicative of the hypothyroid condition, whereas choline dehydrogenase activity remained unchanged and that of succinate dehydrogenase decreased on long exposure. The serum concentration of thyroxine decreased in heat-exposed rats. Thyroxine treatment of rats increased H2O2 generation. Hypothyroid conditions obtained by treatment with propylthiouracil or thyroidectomy caused a decrease in H2O2 generation and changes in dehydrogenase activities similar to those with heat exposure. Treatment of heat-exposed or thyroidectomized rats with thyroxine stimulated H2O2 generation by a mechanism apparently involving fresh protein synthesis. The results indicate that H2O2 generation in mitochondria of heat-exposed animals is determined by thyroid status.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Neurospora crassa, the activity of δ-aminolevulinate dehydratase, the second and rate-limiting enzyme of the heme-biosynthetic pathway, is low in normal cells compared to the activity detected in plants, animals and bacteria. The activity is almost undetectable when Neurospora crassa is grown under iron-deficient conditions. The enzyme activity increases strikingly on addition of iron to iron-deficient cultures. This increase can be blocked by the addition of protoporphyrin, the penultimate product of the heme-biosynthetic pathway, to the cultures. The question whether iron directly acts at the genetic level or acts merely by removing protoporphyrin, converting the latter into heme prosthetic groups of hemoproteins, has been investigated by studying the effect of inhibition of heme synthesis on the induction of δ-aminolevulinate dehydratase. It has been found that treatments with levulinic acid or cyanide which inhibit the formation of the porphyrin moiety, induce δ-aminolevulinate dehydratase, whereas treatments which inhibit at a step after protoporphyrin formation (iron-deficiency and cobalt treatment) repress the enzyme. The endogenous levels of protoporphyrin are strictly controlled: a decrease below the optimum level causing induction and an increase above the optimum level leading to repression of δ-aminolevulinate dehydratase. Levulinic acid and cyanide can induce the enzyme in iron-deficient cultures in the absence of added iron, indicating that the metal iron acts only by converting protoporphyrin to heme fixed in hemoproteins in Neurospora crassa. Therefore it is suggested that protoporphyrin is the physiological regulator of δ-aminolevulinate dehydratase in Neurospora crassa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Administration of the anti-hypercholesterolaemic drug clofibrate to the rat increases the activity of carnitine acetyltransferase (acetyl-CoA-carnitine -acetyltransferase, EC 2.3.1.7) in liver and kidney. The drug-mediated increase in enzyme activity in hepatic mitochondria shows a time lag during which the activity increases in the microsomal and peroxisomal fractions. The enzyme induced in the particulate fractions is identical with one normally present in mitochondria. The increase in enzyme activity is prevented by inhibitors of RNA and general protein synthesis. Mitochondrial protein-synthetic machinery does not appear to be involved in the process. Immunoprecipitation shows increased concentration of the enzyme protein in hepatic mitochondria isolated from drug-treated animals. In these animals, the rate of synthesis of the enzyme is increased 7-fold.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anti-deoxyadenylate antibodies were produced in rabbits by injecting a conjugate of deoxyadenosine 5′-phosphate with bovine serum albumin. The antisera, as analyzed by double diffusion in agar and the quantitative precipitin reaction, showed hapten-specific antibodies. The specific interaction between [3H]deoxyadenylate and antiserum was studied by a sensitive nitrocellulose membrane-binding assay. The specificity of the antibodies was analyzed by measuring the effectiveness of other nucleotides or derivatives to inhibit the hapten-antibody binding. The requirements for recognition by the antibody sites were studied by using a series of naturally occurring nucleic acid components as well as some synthetic derivatives as inhibitors. The antibodies were found to show a high degree of specificity for the whole nucleotide, the base, sugar and phosphate playing almost equally important roles. There was cross reactivity with other mononucleotides, although of a low order. The antibodies were able to react with DNA and tRNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

3,5-Diethoxycarbonyl-1,4-dihydrocollidine (DDC) is a porphyrinogenic agent and is a powerful inducer of δ-aminolaevulinate synthetase, the first and rate-limiting enzyme of the haem-biosynthetic pathway, in mouse liver. However, DDC strikingly inhibits mitochondrial as well as microsomal haem synthesis by depressing the activity of ferrochelatase in vivo. The drug on repeated administration to female mice has been found to elicit hypertrophic effects in the liver microsomes initially, but the effects observed at later stages denote either hyperplasia or increase in polyploidal cells. The microsomal protein concentration shows a striking decrease with repeated doses of the drug. The rate of microsomal protein synthesis in vivo as well as in vitro shows an increase with two injections of DDC but decreases considerably with repeated administration of the drug. The activities of NADPH-cytochrome creductase and ribonuclease are not affected in the liver microsomes of drug-treated animals when expressed per mg of microsomal protein. DDC has also been found to cause degradation of microsomal haem, which is primarily responsible for the decrease in cytochrome P-450 content. The drug also leads to a decrease in mitochondrial cytochrome c levels due to inhibition of haem synthesis and also due to degradation of mitochondrial haem at later stages. The biochemical effects of the drug are compared and discussed with those reported for allylisopropylacetamide and phenobarbital.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Successive administrations of allylisopropylacetamide, a potent porphyrinogenic drug, increase liver weight, microsomal protein and phospholipid contents. There is an increase in the rate of microsomal protein synthesis in vivo and in vitro. The drug decreases microsomal ribonuclease activity and increases NADPH–cytochrome c reductase activity. Phenobarbital, which has been reported to exhibit all these changes mentioned, is a weaker inducer of δ-aminolaevulinate synthetase and increases the rate of haem synthesis only after a considerable time-lag in fed female rats, when compared with the effects observed with allylisopropylacetamide. Again, phenobarbital does not share the property of allylisopropylacetamide in causing an initial decrease in cytochrome P-450 content. Haematin does not counteract most of the biochemical effects caused by allylisopropylacetamide, although it is quite effective in the case of phenobarbital. Haematin does not inhibit the uptake of [2-14C]allylisopropylacetamide by any of the liver subcellular fractions.