19 resultados para Méthode de quantification
Resumo:
The exceptional solution processing potential of graphene oxide (GO) is always one of its main advantages over graphene in terms of its industrial relevance in coatings, electronics, and energy storage. However, the presence of a variety of functional groups on the basal plane and edges of GO makes understanding suspension behavior in aqueous and organic solvents, a major challenge. Acoustic spectroscopy can also measure zeta potential to provide unique insight into flocculating, meta-stable, and stable suspensions of GO in deionized water and a variety of organic solvents (including ethanol, ethylene glycol, and mineral oil). As expected, a match between solvent polarity and the polar functional groups on the GO surface favors stable colloidal suspensions accompanied by a smaller aggregate size tending toward disperse individual flakes of GO. This work is significant since it describes the characteristics of GO in solution and its ability to act as a precursor for graphene-based materials.
Resumo:
Brain signals often show fluctuations in particular frequency bands, which are highly conserved across species and are associated with specific behavioural states. Such rhythmic patterns can be captured in the local field potential (LFP), which is obtained by low-pass filtering the extracellular signal recorded from microelectrodes. However, LFP also captures other neural processes that are associated with spikes, such as synaptic events preceding a spike, low-frequency component of the action potential (spike bleed-through'') and spike afterhyperpolarization, which pose difficulties in the estimation of the amplitude and phase of the rhythm with respect to spikes. Here we discuss these issues and different techniques that have been used to dissociate the rhythm from other neural events in the LFP.
Resumo:
In a practical situation, it is difficult to model exact contact conditions clue to challenges involved in the estimation of contact forces, and relative displacements between the contacting bodies. Sliding and seizure conditions were simulated on first-of-a-kind displacement controlled system. Self-mated stainless steels have been investigated in detail. Categorization of contact conditions prevailing at the contact interface has been carried out based on the variation of coefficient of friction with number of cycles, and three-dimensional fretting loops. Surface and subsurface micro-cracks have been observed, and their characteristic shows strong dependence on loading conditions. Existence of shear bands in the subsurface region has been observed for high strain and low strain rate loading conditions. Studies also include the influence of initial surface roughness on the damage under two extreme contact conditions. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper we consider the problem of guided wave scattering from delamination in laminated composite and further the problem of estimating delamination size and layer-wise location from the guided wave measurement. Damage location and region/size can be estimated from time of flight and wave packet spread, whereas depth information can be obtained from wavenumber modulation in the carrier packet. The key challenge is that these information are highly sensitive to various uncertainties. Variation in reflected and transmitted wave amplitude in a bar due to boundary/interface uncertainty is studied to illustrate such effect. Effect of uncertainty in material parameters on the time of flight are estimated for longitudinal wave propagation. To evaluate the effect of uncertainty in delamination detection, we employ a time domain spectral finite element (tSFEM) scheme where wave propagation is modeled using higher-order interpolation with shape function have spectral convergence properties. A laminated composite beam with layer-wise placement of delamination is considered in the simulation. Scattering due to the presence of delamination is analyzed. For a single delamination, two identical waveforms are created at the two fronts of the delamination, whereas waves in the two sub-laminates create two independent waveforms with different wavelengths. Scattering due to multiple delaminations in composite beam is studied.