157 resultados para Lobsters of the Indian Seas
Resumo:
For over a century, the term break has been used for spells in which the rainfall over the Indian monsoon zone is interrupted. The phenomenon of 'break monsoon' is of great interest because long intense breaks are often associated with poor monsoon seasons. Such breaks have distinct circulation characteristics (heat trough type circulation) and have a large impact on rainfed agriculture. Although interruption of the monsoon rainfall is considered to be the most important feature of the break monsoon, traditionally breaks have been identified on the basis of the surface pressure and wind patterns over the Indian region. We have defined breaks (and active spells) on the basis of rainfall over the monsoon zone. The rainfall criteria are chosen so as to ensure a large overlap with the traditional breaks documented by Ramamurthy (1969) and De et al (1998). We have identified these rainbreaks for 1901-89. We have also identified active spells on the basis of rainfall over the Indian monsoon zone. We have shown that the all-India summer monsoon rainfall is significantly negatively correlated with the number of rainbreak days (correlation coefficient -0.56) and significantly positively correlated with the number of active days (correlation coefficient 0.47). Thus the interannual variation of the all-India summer monsoon rainfall is shown to be related to the number of days of rainbreaks and active spells identified here. There have been several studies of breaks (and also active spells in several cases) identified on the basis of different criteria over regions differing in spatial scales (e.g., Webster et al 1998; Krishnan et al 2000; Goswami and Mohan 2000; and Annamalai and Slingo 2001). We find that there is considerable overlap between the rainbreaks we have identified and breaks based on the traditional definition. There is some overlap with the breaks identified by Krishnan et al (2000) but little overlap with breaks identified by Webster et al (1998). Further, there are three or four active-break cycles in a season according to Webster et al (1998) which implies a time scale of about 40 days for which Goswami and Mohan (2000), and Annamalai and Slingo'(2001) have studied breaks and active minus break fluctuations. On the other hand, neither the traditional breaks (Ramamurthy 1969; and De et al 1998) nor the rainbreaks occur every year. This suggests that the 'breaks' in these studies axe weak spells of the intraseasonal variation of the monsoon, which occur every year. We have derived the OLR and circulation patterns associated with rainbreaks and active spells and compared them with the patterns associated with breaks/active minus break spells from these studies. Inspite of differences in the patterns over the Indian region, there is one feature which is seen in the OLR anomaly patterns of breaks identified on the basis of different criteria as well as the rainbreaks identified in this paper viz., a quadrapole over the Asia-west Pacific region arising from anomalies opposite (same) in sign to those over the Indian region occurring over the equatorial Indian Ocean and northern tropical (equatorial) parts of the west Pacific. Thus it appears that this quadrapole is a basic feature of weak spells of the intraseasonal,variation over the Asia-west Pacific region. Since the rainbreaks are intense weak spells, this basic feature is also seen in the composite patterns of these breaks. We find that rainbreaks (active spells) are also associated with negative (positive) anomalies over a part of the cast Pacific suggesting that the convection over the Indian region is linked to that over the east Pacific not only on the interannual scale (as evinced by the link between the Indian summer monsoon rainfall and ENSO) but on the intraseasonal scale as well.
Resumo:
Following the seminal work of Charney and Shukla (198 1), the tropical climate is recognised to be more predictable than extra tropical climate as it is largely forced by 'external' slowly varying forcing and less sensitive to initial conditions. However, the Indian summer monsoon is an exception within the tropics where 'internal' low frequency (LF) oscillations seem to make significant contribution to its interannual variability (IAV) and makes it sensitive to initial conditions. Quantitative estimate of contribution of 'internal' dynamics to IAV of Indian monsoon is made using long experiments with an atmospheric general circulation model (AGCM) and through analysis of long daily observations. Both AGCM experiments and observations indicate that more than 50% of IAV of the monsoon is contributed by 'internal' dynamics making the predictable signal (external component) burried in unpredictable noise (internal component) of comparable amplitude. Better understanding of the nature of the 'internal' LF variability is crucial for any improvement in predicition of seasonal mean monsoon. Nature of 'internal' LF variability of the monsoon and mechanism responsible for it are investigated and shown that vigorous monsoon intraseasonal oscillations (ISO's) with time scale between 10-70 days are primarily responsible for generating the 'internal' IAV. The monsoon ISO's do this through scale interactions with synoptic disturbances (1-7 day time scale) on one hand and the annual cycle on the other. The spatial structure of the monsoon ISO's is similar to that of the seasonal mean. It is shown that frequency of occurance of strong (weak) phases of the ISO is different in different seasons giving rise to stronger (weaker) than normal monsoon. Change in the large scale circulation during strong (weak) phases of the ISO make it favourable (inhibiting) for cyclogenesis and gives rise to space time clustering of synoptic activity. This process leads to enhanced (reduced) rainfall in seasons of higher frequency of occurence strong (weak) phases of monsoon ISO.
Resumo:
Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007-2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by similar to 90 and similar to 200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3-5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.
Resumo:
In the Indian Ocean, mid-depth oxygen minimum zones (OMZs) occur in the Arabian Sea and the Bay of Bengal. The lower part of the Arabian-Sea OMZ (ASOMZ; below 400 m) intensifies northward across the basin; in contrast, its upper part (above 400 m) is located in the central/eastern basin, well east of the most productive regions along the western boundary. The Bay-of-Bengal OMZ (BBOMZ), although strong, is weaker than the ASOMZ. To investigate the processes that maintain the Indian-Ocean OMZs, we obtain a suite of solutions to a coupled biological/physical model. Its physical component is a variable-density, 6 1/2-layer model, in which each layer corresponds to a distinct dynamical regime or water-mass type. Its biological component has six compartments: nutrients, phytoplankton, zooplankton, two size classes of detritus, and oxygen. Because the model grid is non-eddy resolving (0.5 degrees), the biological model also includes a parameterization of enhanced mixing based on the eddy kinetic energy derived from satellite observations. To explore further the impact of local processes on OMZs, we also obtain analytic solutions to a one-dimensional, simplified version of the biological model. Our control run is able to simulate basic features of the oxygen, nutrient, and phytoplankton fields throughout the Indian Ocean. The model OMZs result from a balance, or lack thereof, between a sink of oxygen by remineralization and subsurface oxygen sources due primarily to northward spreading of oxygenated water from the Southern Hemisphere, with a contribution from Persian-Gulf water in the northern Arabian Sea. The northward intensification of the lower ASOMZ results mostly from horizontal mixing since advection is weak in its depth range. The eastward shift of the upper ASOMZ is due primarily to enhanced advection and vertical eddy mixing in the western Arabian Sea, which spread oxygenated waters both horizontally and vertically. Advection carries small detritus from the western boundary into the central/eastern Arabian Sea, where it provides an additional source of remineralization that drives the ASOMZ to suboxic levels. The model BBOMZ is weaker than the ASOMZ because the Bay lacks a remote source of detritus from the western boundary. Although detritus has a prominent annual cycle, the model OMZs do not because there is not enough time for significant remineralization to occur.
Resumo:
A new evaluation of the elastic thickness (Te) structure of the Indian Shield, derived from isotropic fan wavelet methodology, documents spatial variations of lithospheric deformation in different tectonic provinces correlated with episodic tectono-thermal events. The Te variations corroborated by shear velocity, crustal thickness, and seismogenic thickness reveal the heterogeneous rheology of the Indian lithosphere. The thinned, attenuated lithosphere beneath Peninsular India is considered to be the reason for its mechanically weak strength (<30 km), where a decoupled crust-mantle rheology under different surface/subsurface loading structures may explain the prominent low Te patterns. The arcuate Te structure of the Western Dharwar province and a NNE-trending band of low Te anomaly in the Southern Granulite Terrane are intriguing patterns. The average Te values (40-50 km) of the Central Indian Tectonic Zone, the Bastar Craton, and the northern Eastern Ghats Mobile Belt are suggestive of old, stable, Indian lithosphere, which was not affected by any major tectono-thermal events after cratonic stabilization. We propose that the anomalously high Te (60-85 km) and high S-wave velocity zone to the north of the Narmada-Son Lineament, mainly in NW Himalaya, and the northern Aravalli and Bundelkhand Cratons, suggest that Archean lithosphere characterized by a high velocity mantle keel supports the orogenic topographic loads in/near the Himalaya. The Te map clearly segments the volcanic provinces of the Indian Shield, where the signatures of the Reunion, Marion, and Kerguelen hotspots are indicated by significantly low Te patterns that correlate with plume- and rift-related thermal and mechanical rejuvenation, magmatic underplating, and crustal necking. The correlations between Te variations and the occurrence of seismicity over seismically active zones reveal different causal relationships, which led to the current seismogenic zonation of the Indian Shield. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The marine snail Conus araneosus has unusual significance due to its confined distribution to coastal regions of southeast India and Sri Lanka. Due to its relative scarceness, this species has been poorly studied. In this work, we characterized the venom of C. araneosus to identify new venom peptides. We identified 14 novel compounds. We determined amino acid sequences from chemically-modified and unmodified crude venom using liquid chromatography-electrospray ionization mass spectrometry and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Ten sequences showed six Cys residues arranged in a pattern that is most commonly associated with the M-superfamily of conotoxins. Four other sequences had four Cys residues in a pattern that is most commonly associated with the T-superfamily of conotoxins. The post-translationally modified residue (pyroglutamate) was determined at the N-terminus of two sequences, ar3h and ar3i respectively. In addition, two sequences, ar3g and ar3h were C-terminally amidated. At a dose of 2 nmol, peptide ar3j elicited sleep when injected intraperitoneally into mice. To our knowledge, this is the first report of a peptide from a molluscivorous cone snail with sleep-inducing effects in mice. The novel peptides characterized herein extend the repertoire of unique peptides derived from cone snails and may add value to the therapeutic promise of conotoxins. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Approximately 140 million years ago, the Indian plate separated from Gondwana and migrated by almost 90 degrees latitude to its current location, forming the Himalayan-Tibetan system. Large discrepancies exist in the rate of migration of Indian plate during Phanerozoic. Here we describe a new approach to paleo-latitudinal reconstruction based on simultaneous determination of carbonate formation temperature and delta O-18 of soil carbonates, constrained by the abundances of C-13-O-18 bonds in palaeosol carbonates. Assuming that the palaeosol carbonates have a strong relationship with the composition of the meteoric water, delta O-18 carbonate of palaeosol can constrain paleo-latitudinal position. Weighted mean annual rainfall delta O-18 water values measured at several stations across the southern latitudes are used to derive a polynomial equation: delta(18)Ow = -0.006 x (LAT)(2) - 0.294 x (LAT) - 5.29 which is used for latitudinal reconstruction. We use this approach to show the northward migration of the Indian plate from 46.8 +/- 5.8 degrees S during the Permian (269 M. y.) to 30 +/- 11 degrees S during the Triassic (248 M. y.), 14.7 +/- 8.7 degrees S during the early Cretaceous (135 M. y.), and 28 +/- 8.8 degrees S during the late Cretaceous ( 68 M. y.). Soil carbonate delta O-18 provides an alternative method for tracing the latitudinal position of Indian plate in the past and the estimates are consistent with the paleo-magnetic records which document the position of Indian plate prior to 135 +/- 3 M. y.
Resumo:
The low-level jet (LLJ) over the Indian region, which is most prominent during the monsoon (June-September) season, has been studied with a general circulation model (GCM). The role of African orography in modulating this jet is the focus of this article. The presence o African orography intensifies the cross-equatorial flow. Contrary to previous modelling Studies we find that cross-equatorial flow occurs even in the absence of African orography, though this flow is muc weaker even when the Indian monsoon rainfall is high. However, the location of the meridional jet near the equator in the Somali region is linked to the Indian monsoon rainfall rather than to the land-sea contrast over Somalia. Also, the presence of African orography, and not the strength of the Indian monsoon, controls the vertical extent of the equatorial meridional wind. In an aqua-planet simulation, the cross-equatorial flow occurs about 30 to the west of the rainfall maximum. Thus, the longitudinal location of the equatorial Somali jet depends upon the occurrence of monsoon heating, but the vertical structure of the jet is on account of the western boundary current in the atmosphere due to the East African highlands under the influence of monsoonal heat source.
Resumo:
An Ocean General Circulation Model of the Indian Ocean with high horizontal (0.25 degrees x 0.25 degrees) and vertical (40 levels) resolutions is used to study the dynamics and thermodynamics of the Arabian Sea mini warm pool (ASMWP), the warmest region in the northern Indian Ocean during January-April. The model simulates the seasonal cycle of temperature, salinity and currents as well as the winter time temperature inversions in the southeastern Arabian Sea (SEAS) quite realistically with climatological forcing. An experiment which maintained uniform salinity of 35 psu over the entire model domain reproduces the ASMWP similar to the control run with realistic salinity and this is contrary to the existing theories that stratification caused by the intrusion of low-salinity water from the Bay of Bengal into the SEAS is crucial for the formation of ASMWP. The contribution from temperature inversions to the warming of the SEAS is found to be negligible. Experiments with modified atmospheric forcing over the SEAS show that the low latent heat loss over the SEAS compared to the surroundings, resulting from the low winds due to the orographic effect of Western Ghats, plays an important role in setting up the sea surface temperature (SST) distribution over the SEAS during November March. During March-May, the SEAS responds quickly to the air-sea fluxes and the peak SST during April-May is independent of the SST evolution during previous months. The SEAS behaves as a low wind, heat-dominated regime during November-May and, therefore, the formation and maintenance of the ASMWP is not dependent on the near surface stratification.
Resumo:
The mid-December 2006 to late January 2007 flood in southern Peninsular Malaysia was the worst flood in a century and was caused by three extreme precipitation episodes. These extreme precipitation events were mainly associated with strong northeasterly winds over the South China Sea. In all cases, the northeasterlies penetrated anomalously far south and followed almost a straight trajectory. The elevated terrain over Sumatra and southern Peninsular Malaysia caused low-level convergence. The strong easterly winds near Java associated with the Rossby wave-type response to Madden-Julian Oscillation (MJO) inhibited the counter-clockwise turning of the northeasterlies and the formation of the Borneo vortex, which, in turn, enhanced the low-level convergence over the region. The abrupt termination of the Indian Ocean Dipole (IOD) in December 2006 played a secondary role as warmer equatorial Indian Ocean helped in the MJO formation.
Resumo:
We sampled Palaearctic naked-toed geckos from across their range in India and used two mitochondrial and two nuclear genes to reconstruct relationships within a global phylogeny. Published sequences of Peninsular Indian Hemidactylus allow us to contrast these two groups in dating analyses - providing insights into the history of the Indian dry zone. Palaearctic naked-toed geckos first moved onto the Indian Plate in the Oligocene, with higher-level diversification probably linked to collision of the Indian and Eurasian plates, and subsequent dispersal into-India and diversification with increasing Miocene aridity. An independent gekkonid radiation with species in the dry zone, Hemidactylus diversified during the same period in Peninsular India. Our results demonstrate that dry zone taxa across India may date back to at least the Miocene, with a potential historical climatic barrier between the Indus and Peninsular Indian Divisions. `Cyrtopodion' aravallense is revealed to be a complex with seven genetically and environmentally divergent lineages that began diversifying in the late Miocene, congruent with increased aridity in north-western India. This discovery of cryptic diversity in the Indian dry zone represents the first terrestrial vertebrate radiation from north-western central India and highlights how little we understand of the regions' biodiversity, emphasizing the need for systematic geographic sampling and multiline evidence to reveal true patterns of diversity. The ancestor of `Cyrtopodion' aravallense came into the nascent Indian dry zone in the Miocene and has since diversified, potentially in the absence of any sympatric scansorial rupicolous geckos. Cyrtopodion scabrum represents a unique case of commensalism and shows phylogeographic structure in its presumed native range. The taxonomic implications of our study include a number of undescribed species, recognition of `Cyrtopodion' as a distinct lineage and the non-monophyly of Altiphylax.