128 resultados para Linear boundary value control problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a mixed-type Fourier transform of a general form in the case of water of infinite depth and the method of eigenfunction expansion in the case of water of finite depth, several boundary-value problems involving the propagation and scattering of time harmonic surface water waves by vertical porous walls have been fully investigated, taking into account the effect of surface tension also. Known results are recovered either directly or as particular cases of the general problems under consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of tangential friction at pin—hole interfaces are appropriately modelled for the analysis of fasteners in large composite (orthotropic) plate loaded along its edges. The pin—hole contact could be of interference, clearance or neat fit. When the plate load is monotonically increased, interference fits give rise to receding contact, whereas clearance fits result in advancing contact. In either case, the changing contact situations lead to non-linear moving boundary value problems. The neat fit comes out as a special case in which the contact and separation regions are invariant with the applied load level and so the problem remains linear. The description of boundary conditions in the presence of tangential friction, will depend on whether the problem is one of advancing or receding contact, advancing contact presenting a special problem. A model is developed for the limiting case of a rigid pin and an ideally rough interface (infinitely large friction coefficient). The non-linearity resulting from the continuously varying proportions of contact and separation at the interface, is handled by an “Inverse Formulation” which was successfully applied earlier by the authors for smooth (zero friction) interfacial conditions. The additional difficulty introduced by advancing contact is handled by adopting a “Marching Solution”. The modelling and the procedure are illustrated in respect of symmetric plate load cases. Numerical results are presented bringing out the effects of interfacial friction and plate orthotropy on load-contact relations and plate stresses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under certain specific assumption it has been observed that the basic equations of magneto-elasticity in the case of plane deformation lead to a biharmonic equation, as in the case of the classical plane theory of elasticity. The method of solving boundary value problems has been properly modified and a unified approach in solving such problems has been suggested with special reference to problems relating thin infinite plates with a hole. Closed form expressions have been obtained for the stresses due to a uniform magnetic field present in the plane of deformation of a thin infinite conducting plate with a circular hole, the plate being deformed by a tension acting parallel to the direction of the magnetic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method of designing a minimax filter in the presence of large plant uncertainties and constraints on the mean squared values of the estimates. The minimax filtering problem is reformulated in the framework of a deterministic optimal control problem and the method of solution employed, invokes the matrix Minimum Principle. The constrained linear filter and its relation to singular control problems has been illustrated. For the class of problems considered here it is shown that the filter can he constrained separately after carrying out the mini maximization. Numorieal examples are presented to illustrate the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational scheme for determining the dynamic stiffness coefficients of a linear, inclined, translating and viscously/hysteretically damped cable element is outlined. Also taken into account is the coupling between inplane transverse and longitudinal forms of cable vibration. The scheme is based on conversion of the governing set of quasistatic boundary value problems into a larger equivalent set of initial value problems, which are subsequently numerically integrated in a spatial domain using marching algorithms. Numerical results which bring out the nature of the dynamic stiffness coefficients are presented. A specific example of random vibration analysis of a long span cable subjected to earthquake support motions modeled as vector gaussian random processes is also discussed. The approach presented is versatile and capable of handling many complicating effects in cable dynamics in a unified manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large class of scattering problems of surface water waves by vertical barriers lead to mixed boundary value problems for Laplace equation. Specific attentions are paid, in the present article, to highlight an analytical method to handle this class of problems of surface water wave scattering, when the barriers in question are non-reflecting in nature. A new set of boundary conditions is proposed for such non-reflecting barriers and tile resulting boundary value problems are handled in the linearized theory of water waves. Three basic poblems of scattering by vertical barriers are solved. The present new theory of non-reflecting vertical barriers predict new transmission coefficients and tile solutions of tile mathematical problems turn out to be extremely simple and straight forward as compared to the solution for other types of barriers handled previously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resin impregnated paper (RIP) is a relatively new insulation system recommended for the use in transformer bushings. In the recent past, RIP has acquired prominence as insulation in bushings, over conventional oil impregnated paper (OIP), in view of its overwhelming advantages the more important among them being low dielectric loss and possibility for positioning the bushing at any desired angle over the transformer. In addition, the fact that such systems do not pose problems of fire hazard is counted as a very important consideration. The disadvantage of RIP compared to OIP, however, is its much higher cost and involved manufacturing process. The temperature rise in RIP bushings under normal operating conditions is seen to be a difficult parameter to control in view of the limited options for effective cooling. It is therefore essential to take serious note of this aspect, to arrest rapid deterioration of bushing. The degradation of dry-type insulation such as RIP is often due to thermal stress. The long time performance thereof, depends strongly, on the maximum operating temperature. With this in view, the Authors have developed a theoretical model and computational method to study the temperature distribution in the body of insulation. The Authors consider that the basis for the model as being the temperature and electric stress aided AC conductivity. The ensuing heat balance (continuity) equations in 2-D cylindrical geometry are treated as a Dirichelet-Neumann boundary value problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented for obtaining useful closed form solution of a system of generalized Abel integral equations by using the ideas of fractional integral operators and their applications. This system appears in solving certain mixed boundary value problems arising in the classical theory of elasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pseudo-dynamical approach for a class of inverse problems involving static measurements is proposed and explored. Following linearization of the minimizing functional associated with the underlying optimization problem, the new strategy results in a system of linearized ordinary differential equations (ODEs) whose steady-state solutions yield the desired reconstruction. We consider some explicit and implicit schemes for integrating the ODEs and thus establish a deterministic reconstruction strategy without an explicit use of regularization. A stochastic reconstruction strategy is then developed making use of an ensemble Kalman filter wherein these ODEs serve as the measurement model. Finally, we assess the numerical efficacy of the developed tools against a few linear and nonlinear inverse problems of engineering interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A continuum method of analysis is presented in this paper for the problem of a smooth rigid pin in a finite composite plate subjected to uniaxial loading. The pin could be of interference, push or clearance fit. The plate is idealized to an orthotropic sheet. As the load on the plate is progressively increased, the contact along the pin-hole interface is partial above certain load levels in all three types of fit. In misfit pins (interference or clearance), such situations result in mixed boundary value problems with moving boundaries and in all of them the arc of contact and the stress and displacement fields vary nonlinearly with the applied load. In infinite domains similar problems were analysed earlier by ‘inverse formulation’ and, now, the same approach is selected for finite plates. Finite outer domains introduce analytical complexities in the satisfaction of boundary conditions. These problems are circumvented by adopting a method in which the successive integrals of boundary error functions are equated to zero. Numerical results are presented which bring out the effects of the rectangular geometry and the orthotropic property of the plate. The present solutions are the first step towards the development of special finite elements for fastener joints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal stress problem of a circular hole in a spherical shell of uniform thickness is solved by using a continuum approach. The influence of the hole is assumed to be confined to a small region around the opening. The thermal stress problem is converted as usual to an equivalent boundary value problem with forces specified around the cutout. The stresses and displacement are obtained for a linear variation of temperature across the thickness of the shell and presented in graphical form for ready use.