73 resultados para Lineage Specification
Resumo:
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free,''in,'' and ''out'' eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the singularities of the ''out'' eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of ''complete'' sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the ''out'' eigenvectors. The free, ''in'' and ''out'' eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee–Friedrichs model and to the scattering of a spinless particle by a local central potential. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
In this paper, we propose an extension to the I/O device architecture, as recommended in the PCI-SIG IOV specification, for virtualizing network I/O devices. The aim is to enable fine-grained controls to a virtual machine on the I/O path of a shared device. The architecture allows native access of I/O devices to virtual machines and provides device level QoS hooks for controlling VM specific device usage. For evaluating the architecture we use layered queuing network (LQN) models. We implement the architecture and evaluate it using simulation techniques, on the LQN model, to demonstrate the benefits. With the architecture, the benefit for network I/O is 60% more than what can be expected on the existing architecture. Also, the proposed architecture improves scalability in terms of the number of virtual machines intending to share the I/O device.
Resumo:
Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA)problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max-min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga-Bhadra river system in India.
Resumo:
Background: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. Methodology: Single cell suspensions derived from human breast `organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres) were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. Principal Findings: We show that primary mammospheres contain a distinct side-population (SP) that displays a CD24(low)/CD44(low) phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high)/CD24(low) cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1) mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. Conclusions: Thus, the self-renewal potential of human breast stem cells is exhausted within five in vitro passages of mammospheres, suggesting the need for further improvisation in culture conditions for their long-term maintenance.
Resumo:
In this paper we present and compare the results obtained from semi-classical and quantum mechanical simulation for a Double Gate MOSFET structure to analyze the electrostatics and carrier dynamics of this device. The geometries like gate length, body, thickness of this device have been chosen according to the ITRS specification for the different technology nodes. We have shown the extent of deviation between the semi-classical and quantum mechanical results and hence the need of quantum simulations for the promising nanoscale devices in the future technology nodes predicted in ITRS.
Resumo:
This paper makes explicit the relation between relative part position and kinematic freedom of the parts which is implicitly available in the literature. An extensive set of representative papers in the areas of assembly and kinematic modelling is reviewed to specifically identify how the ideas in the two areas are related and influencing the development of each other. The papers are categorised by the approaches followed in the specification, representation, and solution of the part relations. It is observed that the extent of the part geometry is not respected in modelling schemes and as a result, the causal flow of events (proximity–contact–mobility) during the assembling process is not realised in the existing modelling paradigms, which are focusing on either the relative positioning problem or the relative motion problem. Though an assembly is a static description of part configuration, achievement of this configuration requires availability of relative motion for bringing parts together during the assembly process. On the other hand, the kinematic freedom of a part depends on the nature of contacting regions with other parts in its static configuration. These two problems are thus related through the contact geometry. The chronology of the approaches that significantly contributed to the development of the subject is also included in the paper.
Resumo:
This paper presents a robust fixed order H-2 controller design using Strengthened discrete optimal projection equations, which approximate the first order necessary optimality condition. The novelty of this work is the application of the robust H-2 controller to a micro aerial vehicle named Sarika2 developed in house. The controller is designed in discrete domain for the lateral dynamics of Sarika2 in the presence of low frequency atmospheric turbulence (gust) and high frequency sensor noise. The design specification includes simultaneous stabilization, disturbance rejection and noise attenuation over the entire flight envelope of the vehicle. The resulting controller performance is comprehensively analyzed by means of simulation.
Resumo:
Conformance testing focuses on checking whether an implementation. under test (IUT) behaves according to its specification. Typically, testers are interested it? performing targeted tests that exercise certain features of the IUT This intention is formalized as a test purpose. The tester needs a "strategy" to reach the goal specified by the test purpose. Also, for a particular test case, the strategy should tell the tester whether the IUT has passed, failed. or deviated front the test purpose. In [8] Jeron and Morel show how to compute, for a given finite state machine specification and a test purpose automaton, a complete test graph (CTG) which represents all test strategies. In this paper; we consider the case when the specification is a hierarchical state machine and show how to compute a hierarchical CTG which preserves the hierarchical structure of the specification. We also propose an algorithm for an online test oracle which avoids a space overhead associated with the CTG.
Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases
Resumo:
Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine kinase motifs in plants using the delineated tyrosine phosphorylation motifs from the animal system. The Arabidopsis thaliana genome encodes 57 different protein kinases that have tyrosine kinase motifs. Animal non-receptor tyrosine kinases, SRC, ABL, LYN, FES, SEK, KIN and RAS have structural relationship with putative plant tyrosine kinases. In an extended analysis, animal receptor and non-receptor kinases, Raf and Ras kinases, mixed lineage kinases and plant serine/threonine/tyrosine (STY) protein kinases, form a well-supported group sharing a common origin within the superfamily of STY kinases. We report that plants lack bona fide tyrosine kinases, which raise an intriguing possibility that tyrosine phosphorylation is carried out by dual-specificity STY protein kinases in plants. The distribution pattern of STY protein kinase families on Arabidopsis chromosomes indicates that this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. Genome-wide analysis is supported by the functional expression and characterization of At2g24360 and phosphoproteomics of Arabidopsis. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, anti-phosphotyrosine immunoblotting, phosphoamino acid analysis and peptide mass fingerprinting. These results report the first comprehensive survey of genome-wide and tyrosine phosphoproteome analysis of plant STY protein kinases.
Resumo:
A nonparametric, hierarchical, disaggregative clustering algorithm is developed using a novel similarity measure, called the mutual neighborhood value (MNV), which takes into account the conventional nearest neighbor ranks of two samples with respect to each other. The algorithm is simple, noniterative, requires low storage, and needs no specification of the expected number of clusters. The algorithm appears very versatile as it is capable of discerning spherical and nonspherical clusters, linearly nonseparable clusters, clusters with unequal populations, and clusters with lowdensity bridges. Changing of the neighborhood size enables discernment of strong or weak patterns.
Resumo:
The electroslag refining technique is one of the modern tools which is capable of imparting superior mechanical and chemical properties to metals and alloys. Refining usually results in the elimination of a number of casting or solidification defects, such as shrinkage porosity, gas porosity, pipe, micro- and macro segregation. Remelting also imparts a directional grain structure apart from refining the size of the inclusions, grains and precipitates. This technique has over the years been used widely and successfully to improve the mechanical and chemical properties of steels and alloy steels which are used in the nuclear, missile, aerospace and marine industries for certain critical applications. But the application of ESR to aluminium and its alloys is only recent. This paper investigates the response of an aluminium alloy (corresponding to the Indian Specification IS: 7670) to ESR. Based on theoretical considerations and microstructural evidence it elucidates how ESR of aluminium alloys differs from that of ferrous alloys. The improvement achieved in mechanical properties of the alloy is correlated with the microstructure.
Resumo:
Many aerospace and scientific applications require the specification of the atmospheric properties at various locations, UT and seasons for a range of solar and geomagnetic activity. The nature and mechanisms of the lower and upper atmospheres are different so also their models. Further there is a need to match these models and this is accomplished here in a simple way. In the revision of CIRA 1972 in 1986, the reference middle atmospheres is not yet complete. Two annual reference atmospheres from sea level up to 2000 km for the midlatitude and the tropics is proposed. Other monthly reference atmospheres as also the structure of the atmospheric tables to be provided in the above document is also indicated.
Resumo:
Formal specification is vital to the development of distributed real-time systems as these systems are inherently complex and safety-critical. It is widely acknowledged that formal specification and automatic analysis of specifications can significantly increase system reliability. Although a number of specification techniques for real-time systems have been reported in the literature, most of these formalisms do not adequately address to the constraints that the aspects of 'distribution' and 'real-time' impose on specifications. Further, an automatic verification tool is necessary to reduce human errors in the reasoning process. In this regard, this paper is an attempt towards the development of a novel executable specification language for distributed real-time systems. First, we give a precise characterization of the syntax and semantics of DL. Subsequently, we discuss the problems of model checking, automatic verification of satisfiability of DL specifications, and testing conformance of event traces with DL specifications. Effective solutions to these problems are presented as extensions to the classical first-order tableau algorithm. The use of the proposed framework is illustrated by specifying a sample problem.
Resumo:
This study concerns the effect of duration of load increment (up to 24 h) on the consolidation properties of expansive black cotton soil (liquid limit = 81%) and nonexpansive kaolinite (liquid limit = 49%). It indicates that the amount and rate of compression are not noticeably affected by the duration of loading for a standard sample of 25 mm in height and 76.2 mm in diameter with double drainage. Hence, the compression index and coefficient of consolidation can be obtained with reasonable accuracy even if the duration of each load increment is as short as 4 h. The secondary compression coefficient (C-alpha epsilon) for kaolinite can be obtained for any pressure range with 1/2 h of loading, which, however, requires 4 h for black cotton soil. This is because primary consolidation is completed early in the case of kaolinite. The paper proves that the conventional consolidation test can be carried out with much shorter duration of loading (less than 4 h) than the standard specification of 24 h or more even for remolded fine-grained soils.
Resumo:
We have made careful counts of the exact number of spore, stalk and basal disc cells in small fruiting bodies of Dictyostelium discoideum (undifferentiated amoebae are found only rarely and on average their fraction is 4.96 x 10(-4)). (i) Within aggregates of a given size, the relative apportioning of amoebae to the main cell types occurs with a remarkable degree of precision. In most cases the coefficient of variation (c.v.) in the mean fraction of cells that form spores is within 4.86%. The contribution of stalk and basal disc cells is highly variable when considered separately (c.v.'s upto 25% and 100%, respectively), but markedly less so when considered together. Calculations based on theoretical models indicate that purely cell-autonomous specification of cell, fate cannot account for die observed accuracy of proportioning. Cell-autonomous determination to a prestalk or prespore condition followed by cell type interconversion, and stabilised by feedbacks, suffices to explain the measured accuracy. (ii) The fraction of amoebae that differentiates into spores increases monotonically with the total number of cells. This fraction rises from an average of 73.6% for total cell numbers below 30 and reaches 86.0% for cell numbers between 170 and 200 (it remains steady thereafter at around 86%). Correspondingly, the fraction of amoebae differentiating into stalk or basal disc decreases viith total size. These trends are in accordance with evolutionary expectations and imply that a mechanism for sensing the overall size of the aggregate also plays an essential role in the determination of cell-type proportions.