84 resultados para Ligante RANK
Resumo:
This paper describes the application of vector spaces over Galois fields, for obtaining a formal description of a picture in the form of a very compact, non-redundant, unique syntactic code. Two different methods of encoding are described. Both these methods consist in identifying the given picture as a matrix (called picture matrix) over a finite field. In the first method, the eigenvalues and eigenvectors of this matrix are obtained. The eigenvector expansion theorem is then used to reconstruct the original matrix. If several of the eigenvalues happen to be zero this scheme results in a considerable compression. In the second method, the picture matrix is reduced to a primitive diagonal form (Hermite canonical form) by elementary row and column transformations. These sequences of elementary transformations constitute a unique and unambiguous syntactic code-called Hermite code—for reconstructing the picture from the primitive diagonal matrix. A good compression of the picture results, if the rank of the matrix is considerably lower than its order. An important aspect of this code is that it preserves the neighbourhood relations in the picture and the primitive remains invariant under translation, rotation, reflection, enlargement and replication. It is also possible to derive the codes for these transformed pictures from the Hermite code of the original picture by simple algebraic manipulation. This code will find extensive applications in picture compression, storage, retrieval, transmission and in designing pattern recognition and artificial intelligence systems.
Resumo:
A simple yet efficient method for the minimization of incompletely specified sequential machines (ISSMs) is proposed. Precise theorems are developed, as a consequence of which several compatibles can be deleted from consideration at the very first stage in the search for a minimal closed cover. Thus, the computational work is significantly reduced. Initial cardinality of the minimal closed cover is further reduced by a consideration of the maximal compatibles (MC's) only; as a result the method converges to the solution faster than the existing procedures. "Rank" of a compatible is defined. It is shown that ordering the compatibles, in accordance with their rank, reduces the number of comparisons to be made in the search for exclusion of compatibles. The new method is simple, systematic, and programmable. It does not involve any heuristics or intuitive procedures. For small- and medium-sized machines, it canle used for hand computation as well. For one of the illustrative examples used in this paper, 30 out of 40 compatibles can be ignored in accordance with the proposed rules and the remaining 10 compatibles only need be considered for obtaining a minimal solution.
Resumo:
Synthesis, spectroscopic and thermal characterization of two new classes of polysulfide polymers: poly[1(phenoxymethyl) ethylene polysulfide] (PPMEP), and poly [1-(phenoxy) ethylene polysulfide] (PPEP) is presented. The direct pyrolysis mass spectrometry (DP-MS) technique, used to study the thermal degradation behavior of these polysulfide polymers, indicated that the polymers underwent degradation through the weak-links scission. The thermal stability of the polysulfide polymers decreased as the ``rank'' (number of sulfur atoms in the polysulfide linkage; n=1, 2, 4) increased. The main-chain flexibility of these polysulfide polymers in terms of their C-13 NMR spinlattice relaxation time (T-1) measurements on the backbone methine (-CH-) and methylene (-CH2-) carbons are reported here for the first time. A comparative study of the solution chain dynamics indicated that it increased as ``rank'' of the polysulfide linkages decreased as well as by introducing side chain spacers such as, ether (-O-) or methyleneoxy (-CH2O-) groups.
Resumo:
We consider the problem of detecting statistically significant sequential patterns in multineuronal spike trains. These patterns are characterized by ordered sequences of spikes from different neurons with specific delays between spikes. We have previously proposed a data-mining scheme to efficiently discover such patterns, which occur often enough in the data. Here we propose a method to determine the statistical significance of such repeating patterns. The novelty of our approach is that we use a compound null hypothesis that not only includes models of independent neurons but also models where neurons have weak dependencies. The strength of interaction among the neurons is represented in terms of certain pair-wise conditional probabilities. We specify our null hypothesis by putting an upper bound on all such conditional probabilities. We construct a probabilistic model that captures the counting process and use this to derive a test of significance for rejecting such a compound null hypothesis. The structure of our null hypothesis also allows us to rank-order different significant patterns. We illustrate the effectiveness of our approach using spike trains generated with a simulator.
Resumo:
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Feature track matrix factorization based methods have been attractive solutions to the Structure-front-motion (Sfnl) problem. Group motion of the feature points is analyzed to get the 3D information. It is well known that the factorization formulations give rise to rank deficient system of equations. Even when enough constraints exist, the extracted models are sparse due the unavailability of pixel level tracks. Pixel level tracking of 3D surfaces is a difficult problem, particularly when the surface has very little texture as in a human face. Only sparsely located feature points can be tracked and tracking error arc inevitable along rotating lose texture surfaces. However, the 3D models of an object class lie in a subspace of the set of all possible 3D models. We propose a novel solution to the Structure-from-motion problem which utilizes the high-resolution 3D obtained from range scanner to compute a basis for this desired subspace. Adding subspace constraints during factorization also facilitates removal of tracking noise which causes distortions outside the subspace. We demonstrate the effectiveness of our formulation by extracting dense 3D structure of a human face and comparing it with a well known Structure-front-motion algorithm due to Brand.
Resumo:
It is shown that the systems of definite actions described by polar and axial tensors of the second rank and their combinations during the superposition of their elements of complete symmetry with the elements of complete symmetry of the "grey" cube, result in 11 cubic crystallographical groups of complete symmetry. There are 35 ultimate groups (i.e., the groups having the axes of symmetry of infinite order) in complete symmetry of finite figures. 14 out of these groups are ultimate groups of symmetry of polar and axial tensors of the second rank and 24 are new groups. All these 24 ultimate groups are conventional groups since they cannot be presented by certain finite figures possessing the axes of symmetry {Mathematical expression}. Geometrical interpretation for some of the groups of complete symmetry is given. The connection between complete symmetry and physical properties of the crystals (electrical, magnetic and optical) is shown.
Resumo:
Recently it has been proved that any arithmetically Cohen-Macaulay (ACM) bundle of rank two on a general, smooth hypersurface of degree at least three and dimension at least four is a sum of line bundles. When the dimension of the hypersurface is three, a similar result is true provided the degree of the hypersurface is at least six. We extend these results to complete intersection subvarieties by proving that any ACM bundle of rank two on a general, smooth complete intersection subvariety of sufficiently high multi-degree and dimension at least four splits. We also obtain partial results in the case of threefolds.
Resumo:
This paper presents a study of kinematic and force singularities in parallel manipulators and closed-loop mechanisms and their relationship to accessibility and controllability of such manipulators and closed-loop mechanisms, Parallel manipulators and closed-loop mechanisms are classified according to their degrees of freedom, number of output Cartesian variables used to describe their motion and the number of actuated joint inputs. The singularities in the workspace are obtained by considering the force transformation matrix which maps the forces and torques in joint space to output forces and torques ill Cartesian space. The regions in the workspace which violate the small time local controllability (STLC) and small time local accessibility (STLA) condition are obtained by deriving the equations of motion in terms of Cartesian variables and by using techniques from Lie algebra.We show that for fully actuated manipulators when the number ofactuated joint inputs is equal to the number of output Cartesian variables, and the force transformation matrix loses rank, the parallel manipulator does not meet the STLC requirement. For the case where the number of joint inputs is less than the number of output Cartesian variables, if the constraint forces and torques (represented by the Lagrange multipliers) become infinite, the force transformation matrix loses rank. Finally, we show that the singular and non-STLC regions in the workspace of a parallel manipulator and closed-loop mechanism can be reduced by adding redundant joint actuators and links. The results are illustrated with the help of numerical examples where we plot the singular and non-STLC/non-STLA regions of parallel manipulators and closed-loop mechanisms belonging to the above mentioned classes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.
Resumo:
The objective of the present paper is to select the best compromise irrigation planning strategy for the case study of Jayakwadi irrigation project, Maharashtra, India. Four-phase methodology is employed. In phase 1, separate linear programming (LP) models are formulated for the three objectives, namely. net economic benefits, agricultural production and labour employment. In phase 2, nondominated (compromise) irrigation planning strategies are generated using the constraint method of multiobjective optimisation. In phase 3, Kohonen neural networks (KNN) based classification algorithm is employed to sort nondominated irrigation planning strategies into smaller groups. In phase 4, multicriterion analysis (MCA) technique, namely, Compromise Programming is applied to rank strategies obtained from phase 3. It is concluded that the above integrated methodology is effective for modeling multiobjective irrigation planning problems and the present approach can be extended to situations where number of irrigation planning strategies are even large in number. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Design of speaker identification schemes for a small number of speakers (around 10) with a high degree of accuracy in controlled environment is a practical proposition today. When the number of speakers is large (say 50–100), many of these schemes cannot be directly extended, as both recognition error and computation time increase monotonically with population size. The feature selection problem is also complex for such schemes. Though there were earlier attempts to rank order features based on statistical distance measures, it has been observed only recently that the best two independent measurements are not the same as the combination in two's for pattern classification. We propose here a systematic approach to the problem using the decision tree or hierarchical classifier with the following objectives: (1) Design of optimal policy at each node of the tree given the tree structure i.e., the tree skeleton and the features to be used at each node. (2) Determination of the optimal feature measurement and decision policy given only the tree skeleton. Applicability of optimization procedures such as dynamic programming in the design of such trees is studied. The experimental results deal with the design of a 50 speaker identification scheme based on this approach.
Resumo:
We study the Segal-Bargmann transform on a motion group R-n v K, where K is a compact subgroup of SO(n) A characterization of the Poisson integrals associated to the Laplacian on R-n x K is given We also establish a Paley-Wiener type theorem using complexified representations
Resumo:
Exact traveling-wave solutions of time-dependent nonlinear inhomogeneous PDEs, describing several model systems in geophysical fluid dynamics, are found. The reduced nonlinear ODEs are treated as systems of linear algebraic equations in the derivatives. A variety of solutions are found, depending on the rank of the algebraic systems. The geophysical systems include acoustic gravity waves, inertial waves, and Rossby waves. The solutions describe waves which are, in general, either periodic or monoclinic. The present approach is compared with the earlier one due to Grundland (1974) for finding exact solutions of inhomogeneous systems of nonlinear PDEs.
Resumo:
We prove a Wiener Tauberian theorem for the L-1 spherical functions on a semisimple Lie group of arbitrary real rank. We also establish a Schwartz-type theorem for complex groups. As a corollary we obtain a Wiener Tauberian type result for compactly supported distributions.