51 resultados para Lift (Aerodynamics)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>Multicellular development in the social amoeba Dictyostelium discoideum is triggered by starvation. It involves a series of morphogenetic movements, among them being the rising of the spore mass to the tip of the stalk. The process requires precise coordination between two distinct cell types-presumptive (pre-) spore cells and presumptive (pre-) stalk cells. Trishanku (triA) is a gene expressed in prespore cells that is required for normal morphogenesis. The triA- mutant shows pleiotropic effects that include an inability of the spore mass to go all the way to the top. We have examined the cellular behavior required for the normal ascent of the spore mass. Grafting and mixing experiments carried out with tissue fragments and cells show that the upper cup, a tissue that derives from prestalk cells and anterior-like cells (ALCs), does not develop properly in a triA- background. A mutant upper cup is unable to lift the spore mass to the top of the fruiting body, likely due to defective intercellular adhesion. If wild-type upper cup function is provided by prestalk and ALCs, trishanku spores ascend all the way. Conversely, Ax2 spores fail to do so in chimeras in which the upper cup is largely made up of mutant cells. Besides proving that under these conditions the wild-type phenotype of the upper cup is necessary and sufficient for terminal morphogenesis in D. discoideum, this study provides novel insights into developmental and evolutionary aspects of morphogenesis in general. Genes that are active exclusively in one cell type can elicit behavior in a second cell type that enhances the reproductive fitness of the first cell type, thereby showing that morphogenesis is a cooperative process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An examination of the data available at 22 meteorological stations in Karnataka State shows that wind velocities in the State as a whole are neither spectacularly high nor negligibly low. The highest winds (annual mean of around 13 km/hr) are experienced in parts of the northern maidan region of the State (Gulbarga, Raichur and Bidar districts) and in Bangalore. The winds are strongly seasonal: typically, the five monsoon months May-September account for about 80% of the annual wind energy flux. Although the data available are inadequate to make precise estimates, they indicate that the total wind energy potential of the State is about an order of magnitude higher than the current electrical energy consumption. The possible exploitation of wind energy for applications in rural areas therefore requires serious consideration, but it is argued that to be successful it is essential to formulate an integrated and carefully planned programme. The output of current windpumps needs to be increased; a doubling should be feasible by the design of suitable load-matching devices. The first cost has to be reduced by careful design, by the use of local materials and skills and by employing a labour-intensive technology. A consideration of the agricultural factors in the northern maidan region of the State shows that there is likely to be a strong need for mechanical assistance in supplemental and life-saving irrigation for the dry crops characteristic of the area. A technological target for a windmill that could find applications in this area would be one with a rotor diameter of about 10 m that can lift about 10,000 litres of water per hour in winds of 10 km/hr (2.8 m/s) hourly average speed and costs less than about Rs 10,000. Although no such windmills exist as of today, the authors believe that achievement of this target is feasible. An examination of various possible scenarios for the use of windmills in this area suggests that with a windpump costing about Rs 12,000, a three hectare farm growing two dry crops a year can expect an annual return of about 150% from an initial investment of about Rs 15,000. It is concluded that it should be highly worthwhile to undertake a coordinated programme for wind energy development that will include more detailed wind surveys in the northern maidan area (as well as some others, such as the Western Ghats), the development of suitable windmill designs and a study of their applications to agriculture as well as to other fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flapping equation for a rotating rigid helicopter blade is typically derived by considering (1)small flap angle, (2) small induced angle of attack and (3) linear aerodynamics. However, the use of nonlinear aerodynamics such as dynamic stall can make the assumptions of small angles suspect as shown in this paper. A general equation describing helicopter blade flap dynamics for large flap angle and large induced inflow angle of attack is derived. A semi-empirical dynamic stall aerodynamics model (ONERA model) is used. Numerical simulations are performed by solving the nonlinear flapping ordinary differential equation for steady state conditions and the validity of the small angle approximations are examined. It is shown that the small flapping assumption, and to a lesser extent, the small induced angle ofattack assumption, can lead to inaccurate predictions of the blade flap response in certain flight conditions for some rotors when nonlinear aerodynamics is considered. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An energy-based variational approach is used for structural dynamic modeling of the IPMC (Ionic Polymer Metal Composites) flapping wing. Dynamic characteristics of the wing are analyzed using numerical simulations. Starting with the initial design, critical parameters which have influence on the performance of the wing are identified through parametric studies. An optimization study is performed to obtain improved flapping actuation of the IPMC wing. It is shown that the optimization algorithm leads to a flapping wing with dimensions similar to the dragonfly Aeshna Multicolor wing. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the IPMC wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose - This paper aims to validate a comprehensive aeroelastic analysis for a helicopter rotor with the higher harmonic control aeroacoustic rotor test (HART-II) wind tunnel test data. Design/methodology/approach - Aeroelastic analysis of helicopter rotor with elastic blades based on finite element method in space and time and capable of considering higher harmonic control inputs is carried out. Moderate deflection and coriolis nonlinearities are included in the analysis. The rotor aerodynamics are represented using free wake and unsteady aerodynamic models. Findings - Good correlation between analysis and HART-II wind tunnel test data is obtained for blade natural frequencies across a range of rotating speeds. The basic physics of the blade mode shapes are also well captured. In particular, the fundamental flap, lag and torsion modes compare very well. The blade response compares well with HART-II result and other high-fidelity aeroelastic code predictions for flap and torsion mode. For the lead-lag response, the present analysis prediction is somewhat better than other aeroelastic analyses. Research limitations/implications - Predicted blade response trend with higher harmonic pitch control agreed well with the wind tunnel test data, but usually contained a constant offset in the mean values of lead-lag and elastic torsion response. Improvements in the modeling of the aerodynamic environment around the rotor can help reduce this gap between the experimental and numerical results. Practical implications - Correlation of predicted aeroelastic response with wind tunnel test data is a vital step towards validating any helicopter aeroelastic analysis. Such efforts lend confidence in using the numerical analysis to understand the actual physical behavior of the helicopter system. Also, validated numerical analyses can take the place of time-consuming and expensive wind tunnel tests during the initial stage of the design process. Originality/value - While the basic physics appears to be well captured by the aeroelastic analysis, there is need for improvement in the aerodynamic modeling which appears to be the source of the gap between numerical predictions and HART-II wind tunnel experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equatorial Indian Ocean is warmer in the east, has a deeper thermocline and mixed layer, and supports a more convective atmosphere than in the west. During certain years, the eastern Indian Ocean becomes unusually cold, anomalous winds blow from east to west along the equator and southeastward off the coast of Sumatra, thermocline and mixed layer lift up and the atmospheric convection gets suppressed. At the same time, western Indian Ocean becomes warmer and enhances atmospheric convection. This coupled ocean-atmospheric phenomenon in which convection, winds, sea surface temperature (SST) and thermocline take part actively is known as the Indian Ocean Dipole (IOD). Propagation of baroclinic Kelvin and Rossby waves excited by anomalous winds, play an important role in the development of SST anomalies associated with the IOD. Since mean thermocline in the Indian Ocean is deep compared to the Pacific, it was believed for a long time that the Indian Ocean is passive and merely responds to the atmospheric forcing. Discovery of the IOD and studies that followed demonstrate that the Indian Ocean can sustain its own intrinsic coupled ocean-atmosphere processes. About 50% percent of the IOD events in the past 100 years have co-occurred with El Nino Southern Oscillation (ENSO) and the other half independently. Coupled models have been able to reproduce IOD events and process experiments by such models – switching ENSO on and off – support the hypothesis based on observations that IOD events develop either in the presence or absence of ENSO. There is a general consensus among different coupled models as well as analysis of data that IOD events co-occurring during the ENSO are forced by a zonal shift in the descending branch of Walker cell over to the eastern Indian Ocean. Processes that initiate the IOD in the absence of ENSO are not clear, although several studies suggest that anomalies of Hadley circulation are the most probable forcing function. Impact of the IOD is felt in the vicinity of Indian Ocean as well as in remote regions. During IOD events, biological productivity of the eastern Indian Ocean increases and this in turn leads to death of corals over a large area.Moreover, the IOD affects rainfall over the maritime continent, Indian subcontinent, Australia and eastern Africa. The maritime continent and Australia suffer from deficit rainfall whereas India and east Africa receive excess. Despite the successful hindcast of the 2006 IOD by a coupled model, forecasting IOD events and their implications to rainfall variability remains a major challenge as understanding reasons behind an increase in frequency of IOD events in recent decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prediction of lag damping is difficult owing to the delicate balance of drag, induced drag and Coriolis forces in the in‐plane direction. Moreover, induced drag” is sensitive to dynamic wake, bath shed and trailing components, and thus its prediction requires adequate unsteady‐wake representation. Accordingly, rigid‐blade flap‐lag equations are coupled with a three‐dimensional finite‐state wake model; three isolatcd rotor canfigurations with three, four and five blades are treated over a range of thrust levels, tack numbers, lag frequencies and advance ratios. The investigation includes convergence characteristics of damping with respect to the number of radial shape functions and harmonics of the wake model for multiblade modes of low frequency (< 1/ rev.) to high frequency (> 1/rev.). Predicted flap and lag damping levels are then compared with similar predictions with 1) rigid wake (no unsteady induced now), 2) Loewy lift deficiency and 3) dynamic inflow. The coverage also includes correlations with the measured lag regressive‐mode damping in hover and forward flight and comparisons with similar correlations with dynamic inflow. Lag‐damping predictions with the dynamic wake model are consistently higher than the predictions with the dynamic inflow model; even for the low frequency lag regressive mode, the number of wake harmonics should at least be equal to twice the number of blades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, variational principle is used for dynamic modeling of an Ionic Polymer Metal Composite (IPMC) flapping wing. The IPMC is an Electro-active Polymer (EAP) which is emerging as a useful smart material for `artificial muscle' applications. Dynamic characteristics of IPMC flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. A comparative study of the performances of three IPMC flapping wings is conducted. Among the three species, it is found that thrust force produced by the IPMC flapping wing of the same size as Anax Parthenope Julius wing is maximum. Lift force produced by the IPMC wing of the same size as Sympetrum Frequens wing is maximum and the wing is suitable for low speed flight. The numerical results in this paper show that dragonfly inspired IPMC flapping wings are a viable contender for insect scale flapping wing micro air vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variation of the drag force near the top portions of tall stacks with and without external landing platforms, and with the exit open and closed, has been examined by model studies in a wind tunnel at Reynolds numbers of about 10(5). Pressure measurements on three models of different height to diameter ratios have been supplemented by flow visualisation studies. Observations confirm that when there is no platform, significant load enhancement over the top three to four diameters occurs, due to the high suction caused by the sharp separation of the flow over the top from the rim, in the aft regions of the stack. The enhanced loading is found to be greater if the exit is closed. A platform at the top, of less than twice the exit diameter, further increases the drag force near the top, but a still larger platform at the top, of about three times the exit diameter, decreases the drag force to values less than those much further below, effectively nullifying the enhanced drag force. It was found that such a reduction of the enhanced drag force in the top regions can also be achieved by a smaller platform of 1.1 to 1.3 times the local diameter, located at about three to five diameters below the top.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Floquet analysis is widely used for small-order systems (say, order M < 100) to find trim results of control inputs and periodic responses, and stability results of damping levels and frequencies, Presently, however, it is practical neither for design applications nor for comprehensive analysis models that lead to large systems (M > 100); the run time on a sequential computer is simply prohibitive, Accordingly, a massively parallel Floquet analysis is developed with emphasis on large systems, and it is implemented on two SIMD or single-instruction, multiple-data computers with 4096 and 8192 processors, The focus of this development is a parallel shooting method with damped Newton iteration to generate trim results; the Floquet transition matrix (FTM) comes out as a byproduct, The eigenvalues and eigenvectors of the FTM are computed by a parallel QR method, and thereby stability results are generated, For illustration, flap and flap-lag stability of isolated rotors are treated by the parallel analysis and by a corresponding sequential analysis with the conventional shooting and QR methods; linear quasisteady airfoil aerodynamics and a finite-state three-dimensional wake model are used, Computational reliability is quantified by the condition numbers of the Jacobian matrices in Newton iteration, the condition numbers of the eigenvalues and the residual errors of the eigenpairs, and reliability figures are comparable in both the parallel and sequential analyses, Compared to the sequential analysis, the parallel analysis reduces the run time of large systems dramatically, and the reduction increases with increasing system order; this finding offers considerable promise for design and comprehensive-analysis applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements in a mixed flow pump of non-dimensional specific speed k = 1.89[N-S = 100 r/min (metric)] are analysed to give loss distribution and local hydraulic efficiencies at different flowrates and values of tip clearance. Fairly close agreement is obtained between the relative flow angles leaving the blading as predicted by simple deviation and slip models and derived from the measurements. The head developed is broken up into two parts: that contributed by Coriolis action and that associated with blade circulation. It is suggested that lift coefficients based on blade circulation are of limited value in selecting blade profiles. The variation of pump efficiency with tip clearance is greater than that reported for centrifugal pumps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aerodynamics of the blast wave produced by laser ablation is studied using the piston analogy. The unsteady one-dimensional gasdynamic equations governing the flow an solved under assumption of self-similarity. The solutions are utilized to obtain analytical expressions for the velocity, density, pressure and temperature distributions. The results predict. all the experimentally observed features of the laser produced blast waves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A newly developed and validated constitutive model that accounts for primary compression and time-dependent mechanical creep and biodegradation is used for parametric study to investigate the effects of model parameters on the predicted settlement of municipal solid waste (MSW) with time. The model enables the prediction of stress strain response and yield surfaces for three components of settlement: primary compression, mechanical creep, and biodegradation. The MSW parameters investigated include compression index, coefficient of earth pressure at-rest, overconsolidation ratio, and biodegradation parameters of MSW. A comparison of the predicted settlements for typical MSW landfill conditions showed significant differences in time-settlement response depending on the selected model input parameters. The effect of lift thickness of MSW on predicted settlement is also investigated. Overall, the study shows that the variation in the model parameters can lead to significantly different results; therefore, the model parameter values should be carefully selected to predict landfill settlements accurately. It is shown that the proposed model captures the time settlement response which is in general agreement with the results obtained from the other two reported models having similar features. (C) 2011 Elsevier Ltd. All rights reserved.