413 resultados para Lead-acid battery


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 12 V Substrate-Integrated PbO2-Activated Carbon hybrid ultracapacitor (SI-PbO2-AC HUCs) with silica-gel sulfuric acid electrolyte is developed and performance tested. The performance of the silica-gel based hybrid ultracapacitor is compared with flooded and AGM-based HUCs. These HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area activated carbon with dense graphite-sheet substrate as negative electrodes. 12 V SI-PbO2-AC HUCs with flooded, AGM and gel electrolytes are found to have capacitance values of 308 F, 184 F, and 269 F at C-rate and can be pulse charged and discharged for 100,000 cycles with only a nominal decrease in their capacitance values. The best performance is exhibited by gel-electrolyte HUCs.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. The polarographic behaviour of glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine complexes of lead has been studied at various pH values and in presence of (1) NaOH, (2) Na2CO3 and (3) NH4 NO3+NH4OH. All the polarographic waves have been found to be reversible. 2. Experiments conducted on the effect of variation of pH, i.e., 7

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new type of covalent bulk modified glassy carbon composite electrode has been fabricated and utilized in the simultaneous determination of lead and cadmium ions in aqueous medium. The covalent bulk modification was achieved by the chemical reduction of 2-hydroxybenzoic acid diazonium tetrafluroborate in the presence of hypophosphorous acid as a chemical reducing agent. The covalent attachment of the modifier molecule was examined by studying Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the surface morphology was examined by scanning electron microscopy images. The electrochemistry of modified glassy carbon spheres was studied by its cyclic voltammetry to decipher the complexing ability of the modifier molecules towards Pb2+ and Cd2+ ions. The developed sensor showed a linear response in the concentration range 1-10 mu M with a detection limit of 0.18 and 0.20 mu M for lead and cadmium, respectively. The applicability of the proposed sensor has been checked by measuring the lead and cadmium levels quantitatively from sewage water and battery effluent samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of lead nitrate and 1H-imidazole-4,5-dicarboxylic acid under hydrothermal conditions carried out at different temperatures and pH yields a hybrid Compound Pb-2(1H-imidazole-4,5-dicarboxylate)2, 1, and a three-dimensional coordination polymer Pb(1H-imidazole-4,5-dicarboxylate), It. The two-dimensional double-layered compound, 1, with two-dimensional inorganic connectivities and one-dimensional organic connectivity is novel since hybrid compounds formed by 1H-imidazole-4,5-dicarboxylic acid are uncommon. The lead atoms in I have holodirectional geometry, while those in II show hemidirectionality. In both I and II, 1H-imidazole-4,5-dicarboxylic acid acts as a multi-dentate ligand with both the carboxylic groups and the amine group taking part in coordination. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The water soluble carbodiimide mediated condensation of dipeptides of the general form Gly-X was carried out in the presence of mono- and poly-nucleotides. The observed yield of the tetrapeptide was found to be higher for peptide-nucleotide system of higher interaction specificity following mainly the anticodon-amino acid relationship (Basu, H.S. & Podder, S.K., 1981, Ind. J. Biochem. Biophys.,19, 251-253). The yield of the condensation product of L-peptide was more because of its higher interaction specificity. The extent of the racemization during the condensation of Gly-L-Phe, Gly-L-Tyr and Gly-D-Phe was found to be dependent on the specificity of the interaction -the higher the specificity, the lesser the racemization. The product formed was shown to have a catalytic effect on the condensation reaction. These data thus provide a mechanism showing how the specific interaction between amino acids/dipeptides and nucleic acids could lead to the formation of the lsquoprimitiversquo translation machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nature has used the all-alpha-polypeptide backbone of proteins to create a remarkable diversity of folded structures. Sequential patterns of 20 distinct amino adds, which differ only in their side chains, determine the shape and form of proteins. Our understanding of these specific secondary structures is over half a century old and is based primarily on the fundamental elements: the Pauling alpha-helix and beta-sheet. Researchers can also generate structural diversity through the synthesis of polypeptide chains containing homologated (omega) amino acid residues, which contain a variable number of backbone atoms. However, incorporating amino adds with more atoms within the backbone introduces additional torsional freedom into the structure, which can complicate the structural analysis. Fortunately, gabapentin (Gpn), a readily available bulk drug, is an achiral beta,beta-disubstituted gamma amino add residue that contains a cyclohexyl ring at the C-beta carbon atom, which dramatically limits the range of torsion angles that can be obtained about the flanking C-C bonds. Limiting conformational flexibility also has the desirable effect of increasing peptide crystallinity, which permits unambiguous structural characterization by X-ray diffraction methods. This Account describes studies carried out in our laboratory that establish Gpn as a valuable residue in the design of specifically folded hybrid peptide structures. The insertion of additional atoms into polypeptide backbones facilitates the formation of intramolecular hydrogen bonds whose directionality is opposite to that observed in canonical alpha-peptide helices. If hybrid structures mimic proteins and biologically active peptides, the proteolytic stability conferred by unusual backbones can be a major advantage in the area of medicinal chemistry. We have demonstrated a variety of internally hydrogen-bonded structures in the solid state for Gpn-containing peptides, including the characterization of the C-7 and C-9 hydrogen bonds, which can lead to ribbons in homo-oligomeric sequences. In hybrid alpha gamma sequences, district C-12 hydrogen-bonded turn structures support formation of peptide helices and hairpins in longer sequences. Some peptides that include the Gpn residue have hydrogen-bond directionality that matches alpha-peptide helices, while others have the opposite directionality. We expect that expansion of the polypeptide backbone will lead to new classes of foldamer structures, which are thus far unknown to the world of alpha-polypeptides. The diversity of internally hydrogen-bonded structures observed in hybrid sequences containing Gpn shows promise for the rational design of novel peptide structures incorporating hybrid backbones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional achiral coordination polymers of the general formula M2(D, l-NHCH (COO)CH2COO)2·C4H4N2 where M = Ni and Co and pyrazine acts as the linker molecule have been prepared under hydrothermal conditions starting with [M(L-NHCH(COO)CH2COO)·3H2O] possessing a helical chain structure. A three-dimensional hybrid compound of the formula Pb2.5[N{CH(COO) CH2COO}22H2O] has also been prepared hydrothermally starting with aspartic acid and Pb(NO3)2. In this lead compound, where a secondary amine formed by the dimerisation of aspartic acid acts as the ligand, there is two-dimensional inorganic connectivity and one-dimensional organic connectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of novel fluoroaminophosphates 4a-4j were synthesized by one-pot method in presence of tetramethylguanidine (TMG) as a catalyst and were characterized by elemental analysis, FTIR, H-1, C-13, P-31, F-19 NMR, and mass spectra. All the title compounds were evaluated forin vitro cytotoxicity against leukemic cell line derived from T-cells of leukemia patient (CEM cells) by Trypan blue exclusion and MTT assays, and these were found to exert concentration dependent cytotoxic effects. Among them 4f, 4g & 4j possessed marked cytotoxicity. 4g (with IC50 value of 6 mu M) had emerged as lead compound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Administration of 3,5-diethoxy carbonyl-1,4-dihydrocollidine (DDC) to mice resulted in a striking increase in the level of δ-aminolevulinic acid (ALA) synthetase in liver. Although the enzyme activity was primarily localized in mitochondria and postmicrosomal supernatant fluid, a significant level of activity was also detected in purified nuclei. The time course of induction showed a close parallelism between the bound and free enzyme activities with the former always accounting for a higher percentage of the total activity as compared to the latter. Studies with cycloheximide indicated a half-life of around 3 hr for both the bound and free ALA synthetase. Actinomycin D and hemin prevented enzyme induction when administered along with DDC, but when administered 12 hr after DDC treatment Actinomycin D did not lead to a decay of either the bound or free enzyme activity and hemin inhibited the bound enzyme activity but not the free enzyme level. The molecular sizes of the mitochondrial and cytosolic ALA synthetase(s) were found to be similar on sephadex columns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conformational properties of the protected seven-residue C-terminal fragment the lipopeptaibol antibiotic Trichogin A IV (Boc-Gly-Gly-Leu-Aib-Gly-Ile-Leu-OMe) has been examined in CDCl3 and (CD3)2SO by 1H-nmr. Evidence for a multiple β-turn conformation [type I′ at Gly(1)-Gly(2), type II at Leu(3)-Aib(4), and a type I′ at Aib(4)-Gly(5)] suggests that Leu(3) has preferred an extended or semiextended conformation over a helical conformation in CDCl3. This structure is thus in contrast to earlier observations of seven-residue peptides containing a single central Aib preferring helical conformations in both solution and crystalline slates. A structural transition to a frayed right-handed helix is absented in (CD3)2SO. These results suggest that nonhelical conformations may be important in Gly-rich peptides containing Aib. Further, the presence of amino acids with contradictory influences on backbone conformational freedom can lead to well-defined conformational transitions even in small peptides

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid acid polymer electrolytes (SAPE) were synthesised using polyvinyl alcohol, potassium iodide and sulphuric acid in different molar ratios by solution cast technique. The temperature dependent nature of electrical conductivity and the impedance of the polymer electrolytes were determined along with the associated activation energy. The electrical conductivity at room temperature was found to be strongly depended on the amorphous nature of the polymers and H2SO4 concentration. The ac (100 Hz to 10 MHz) and dc conductivities of the polymer electrolytes with different H2SO4 concentrations were analyzed. A maximum dc conductivity of 1.05 x 10(-3) S cm(-1) has been achieved at ambient temperature for electrolytes containing 5 M H2SO4. The frequency and temperature dependent dielectric and electrical modulus properties of the SAPE were studied. The charge transport in the present polymer electrolyte was obtained using Wagner's polarization technique, which demonstrated the charge transport to be mainly due to ions. Using these solid acid polymer electrolytes novel Zn/SAPE/MnO2 solid state batteries were fabricated and their discharge capacity was calculated. An open circuit voltage of 1.758V was obtained for 5 M H2SO4 based Zn/SAPE/MnO2 battery. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead-Carbon hybrid ultracapacitors (Pb-C HUCs) with flooded, absorbent-glass-mat (AGM) and silica-gel sulphuric acid electrolyte configurations are developed and performance tested. Pb-C HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area carbon with graphite-sheet substrate as negative electrodes. The electrode and silica-gel electrolyte materials are characterized by XRD, XPS, SEM, TEM, Rheometry, BET surface area, and FTIR spectroscopy in conjunction with electrochemistry. Electrochemical performance of SI-PbO2 and carbon electrodes is studied using cyclic voltammetry with constant-current charge and discharge techniques by assembling symmetric electrical-double-layer capacitors and hybrid Pb-C HUCs with a dynamic Pb(porous)/PbSO4 reference electrode. The specific capacitance values for 2 V Pb-C HUCs are found to be 166 F/g, 102 F/g and 152 F/g with a faradaic efficiency of 98%, 92% and 88% for flooded, AGM and gel configurations, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment of the chloro-substituted diboradiferrocene derivative 1 with Me3SiOMe and subsequent hydrolysis resulted in formation of the novel organometallic bis(borinic acid) derivative 3. The assembly of 3 into supramolecular structures via hydrogen bonding and reversible covalent boron-oxygen bond formation was explored. Upon crystallization from acetone or THF one-dimensional chains form in which molecules of 3 alternately serve as hydrogen bond donors and acceptors. The additional OH hydrogens that are not involved in hydrogen bonding within the polymeric chains undergo hydrogen bonding to the solvent molecules. Removal of the solvent was achieved at moderate temperature under high vacuum. While the polymeric chains remain intact, in the absence of the solvent as a hydrogen bond acceptor, short contacts to the Cp rings of neighboring polymer strands lead to a network-like structure. At higher temperatures, further dehydration occurs with formation of B-O-B linkages as confirmed by MALDI-TOF mass spectrometry. Oligomers with up to 15 repeating units (30 ferrocenes) were detected.