164 resultados para Lattice construction
Resumo:
Proton spin-lattice relaxation studies in sodium ammonium selenate dihydrate carried out in the temperature range 130 to 300 K at 10 MHz show a continuous change in T, at T, indicating a second order phase transition. This compound is a typical case of a highly hindered solid wherein the thermally activated reorientations of ammonium ions freeze well above 77 K, as seen by NMR.Untersuchimgen der Protonen-Spin-Gitter-Relaxation in Natriuni-Ammoniumselenat-Dihydrat bei 10 MHz im Temperaturbereich 130 bis 300 K zeigen eine kontinuierliche Andernng in TI bei T, und ergeben einen Phasenubergang zweiter Art. Diese Verbindung ist ein typischer Fall eines stark ,,behinderten" Festkarpers, in dein die thermisch aktivierten Reorientierungen der Ammoniumionen weit oberhalb 77 H einfrieren, wie die NMR-Ergebnisse zeigen.
Resumo:
For a feedback system consisting of a transfer function $G(s)$ in the forward path and a time-varying gain $n(t)(0 \leqq n(t) \leqq k)$ in the feedback loop, a stability multiplier $Z(s)$ has been constructed (and used to prove stability) by Freedman [2] such that $Z(s)(G(s) + {1 / K})$ and $Z(s - \sigma )(0 < \sigma < \sigma _ * )$ are strictly positive real, where $\sigma _ * $ can be computed from a knowledge of the phase-angle characteristic of $G(i\omega ) + {1 / k}$ and the time-varying gain $n(t)$ is restricted by $\sigma _ * $ by means of an integral inequality. In this note it is shown that an improved value for $\sigma _ * $ is possible by making some modifications in his derivation. ©1973 Society for Industrial and Applied Mathematics.
Resumo:
A cDNA library for 6S–9S poly(A)-containing RNA from rat liver was constructed in Image . Initial screening of the clones was carried out using single stranded 32P-labeled cDNA prepared against poly(A)-containing RNA isolated from immunoadsorbed polyribosomes enriched for the nuclear-coded subunit messenger RNAs of cytochrome c oxidase. One of the clones, pCO89, was found to hybridize with the messenger RNA for subunit VIC. The DNA sequence of the insert in pCO89 was carried out and it has got extensive homology with the C-terminal 33 amino acids of subunit VIC from beef heart cytochrome c oxidase. In addition, the insert contained 146 bp, corresponding to a portion of the 3′-non-coding region. Northern blot analysis of rat liver RNA with the nick-translated insert of pCO89 revealed that the messenger RNA for subunit VI would contain around 510 bases.
Resumo:
A method was developed in the framework of a bistable jump model to obtain the pyrrolidine ring conformations in proline peptides from 13C spin-lattice relaxation times. Equations are presented expressing the ring torsions in terms of the 13C spin-lattice relaxation times of the ring carbons. This method was applied to 26 pyrrolidine ring systems and acceptable conformations were obtained.
Resumo:
This paper is concerned with the analysis of the absolute stability of a non-linear autonomous system which consists of a single non-linearity belonging to a particular class, in an otherwise linear feedback loop. It is motivated from the earlier Popovlike frequency-domain criteria using the ' multiplier ' eoncept and involves the construction of ' stability multipliers' with prescribed phase characteristics. A few computer-based methods by which this problem can be solved are indicated and it is shown that this constitutes a stop-by-step procedure for testing the stability properties of a given system.
Construction of inverses with prescribed zero minors and applications to decentralized stabilization
Resumo:
We examine the following question: Suppose R is a principal ideal domain, and that F is an n × m matrix with elements in R, with n>m. When does there exist an m × n matrix G such that GF = Im, and such that certain prescribed minors of G equal zero? We show that there is a simple necessary condition for the existence of such a G, but that this condition is not sufficient in general. However, if the set of minors of G that are required to be zero has a certain pattern, then the condition is necessary as well as sufficient. We then show that the pattern mentioned above arises naturally in connection with the question of the existence of decentralized stabilizing controllers for a given plant. Hence our result allows us to derive an extremely simple proof of the fact that a necessary and sufficient condition for the existence of decentralized stabilizing controllers is the absence of unstable decentralized fixed modes, as well as to derive a very clean expression for these fixed modes. In addition to the application to decentralized stabilization, we believe that the result is of independent interest.
Resumo:
The driven state of a well-ordered flux line lattice in a single crystal of 2H-NbSe2 in the time domain has revealed the presence of substantial fluctuations in velocity, with large and distinct time periods (similar to seconds). A superposition of a periodic drive in the driven vortex lattice causes distinct changes in these fluctuations. We propose that prior to the onset of the peak effect there exists a heretofore unexplored regime of coherent dynamics, with unexpected behavior in velocity fluctuations.
Resumo:
Flourite-type nanocrystalline Ce0.9Fe0.1O2-delta and Ce0.89Fe0.1Pd0.01O2-delta solid solutions have been synthesized by solution combustion method,'.which show higher oxygen storage/release property (OSC) compared to CeO2 and Ce0.8Zr0.2O2. Temperature programmed reduction an XPS study reveal that the presence of Pd ion in Ce0.9Fe0.1O2-delta facilitates complete reduction of Fe3+ to Fe2+ state and partial reduction of Ce4+ to Ce3+ state at.temperatures as low as 105 degrees C compared to 400 degrees C for monometal-ionic Ce0.9Fe0.1O2-delta. Fe3+ ion is reduced to Fe2+ and not to Feo due to favorable redox potential for Ce4+ + Fe2+ -> Ce3+ + Fe3+ reaction. Using first-principles density functional theory calculation we determine M-O (M = Pd, Fe, Ce) bond lengths, and find that bond lengths vary from shorter (2.16 angstrom) to longer (2.9 angstrom) bond distances compared to mean Ce-O bond distance of 2.34 angstrom. for CeO2. Using these results in bond valence analysis, we show that oxygen with bond valences as low as -1.55 are created, leading to activation of lattice oxygen in the bimetal ionic catalyst. Temperatures of CO oxidation and NO reduction by CO/H-2 are lower with the bimetalionic Ce0.89Fe0.1Pd0.01O2-delta catalyst compared to monometal-ionic Ce0.9Fe0.1O2-delta and Ce0.99Pd0.01O2-delta catalysts. From XPS studies of Pd impregnated on CeO2 and Fe2O3 oxides, we show that the synergism leading to low temperature activation of lattice oxygen in bimetal-ionic catalyst Ce0.89Fe0.1Pd0.01O2-delta is due to low-temperature reduction of Pd2+ to Pd-0, followed by Pd-0 + 2Fe(3+) -> Pd2+ + 2Fe(2+), Pd-0 + 2Ce(4+) -> Pd2+ + 2Ce(3+) redox reaction.
Resumo:
Purpose - The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity. Design/methodology/approach - The second-order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier-Stokes (NS) equations and with available experimental data. Findings - The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low. Reynolds numbers, but become quite strong at high Reynolds numbers. Originality/value - The findings will be useful in the study of variety of enclosed fluid flows.
Resumo:
Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method.
Resumo:
Substitution of Sn4+ ion in CeO2 creates activated oxygen in Ce0.8Sn0.2O2 leading to higher oxygen storage capacity compared to Ce0.8Zr0.2O2. With Pd ion substitution in Ce0.8Sn0.2O2,activation of oxygen is further enhanced as observed from the H-2/TPR study. Both EXAFS analysis and DFT calculation reveal that in the solid solution Ceexhibits 4 + 4 coordination, Sri exhibits 4 + 2 + 2 coordination and Pd has 4 + 3 coordination. While the oxygen in the First four coordination with short M-O bonds are strongly held in the lattice, the oxygens in the second and higher coordinations with long M-O bonds are weakly bound, and they are the activated oxygen ill the lattice. Bond valence analysis shows that oxygen with valencies as low its 1.65 are created by the Sn and Pd ion Substitution. Another interesting observation is that H-2/TPR experiment of Ce1-xSnxO2 shows a broad peak starting from 200 to 500 degrees C, while the same reduction is achieved in a single step at similar to 110 degrees C in presence Pd2+ on. Substitution of Pd2+ ion thus facilitates synergistic reduction of the catalyst at lower temperature. We have shown that simultaneous reduction of the Ce4+ and Sr4+ ions by Pd-0 is the synergistic interaction leading to high oxygen storage capacity at low temperature.
Resumo:
We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.
Resumo:
In this paper, numerical modelling of fracture in concrete using two-dimensional lattice model is presented and also a few issues related to lattice modelling technique applicable to concrete fracture are reviewed. A comparison is made with acoustic emission (AE) events with the number of fractured elements. To implement the heterogeneity of the plain concrete, two methods namely, by generating grain structure of the concrete using Fuller's distribution and the concrete material properties are randomly distributed following Gaussian distribution are used. In the first method, the modelling of the concrete at meso level is carried out following the existing methods available in literature. The shape of the aggregates present in the concrete are assumed as perfect spheres and shape of the same in two-dimensional lattice network is circular. A three-point bend (TPB) specimen is tested in the experiment under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the fracture process in the same TPB specimen is modelled using regular triangular 2D lattice network. Load versus crack mouth opening isplacement (CMOD) plots thus obtained by using both the methods are compared with experimental results. It was observed that the number of fractured elements increases near the peak load and beyond the peak load. That is once the crack starts to propagate. AE hits also increase rapidly beyond the peak load. It is compulsory here to mention that although the lattice modelling of concrete fracture used in this present study is very similar to those already available in literature, the present work brings out certain finer details which are not available explicitly in the earlier works.
Resumo:
Notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and the entire fracture process was simulated using a regular triangular two-dimensional lattice network only over the expected fracture proces zone width. The rest of the beam specimen was discretised by a coarse triangular finite element mesh. The discrete grain structure of the concrete was generated assuming the grains to be spherical. The load versus CMOD plots thus simulated agreed reasonably well with the experimental results. Moreover, acoustic emission (AE) hits were recorded during the test and compared with the number of fractured lattice elements. It was found that the cumulative AE hits correlated well with the cumulative fractured lattice elements at all load levels thus providing a useful means for predicting when the micro-cracks form during the fracturing process, both in the pre-peak and in the post-peak regimes.
Resumo:
We consider diffusively coupled map lattices with P neighbors (where P is arbitrary) and study the stability of the synchronized state. We show that there exists a critical lattice size beyond which the synchronized state is unstable. This generalizes earlier results for nearest neighbor coupling. We confirm the analytical results by performing numerical simulations on coupled map lattices with logistic map at each node. The above analysis is also extended to two-dimensional P-neighbor diffusively coupled map lattices.