19 resultados para Latin squares
Resumo:
This paper proposes a novel approach to solve the ordinal regression problem using Gaussian processes. The proposed approach, probabilistic least squares ordinal regression (PLSOR), obtains the probability distribution over ordinal labels using a particular likelihood function. It performs model selection (hyperparameter optimization) using the leave-one-out cross-validation (LOO-CV) technique. PLSOR has conceptual simplicity and ease of implementation of least squares approach. Unlike the existing Gaussian process ordinal regression (GPOR) approaches, PLSOR does not use any approximation techniques for inference. We compare the proposed approach with the state-of-the-art GPOR approaches on some synthetic and benchmark data sets. Experimental results show the competitiveness of the proposed approach.
Resumo:
The design of modulation schemes for the physical layer network-coded three-way wireless relaying scenario is considered. The protocol employs two phases: Multiple Access (MA) phase and Broadcast (BC) phase with each phase utilizing one channel use. For the two-way relaying scenario, it was observed by Koike-Akino et al. [4], that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA phase and all these network coding maps should satisfy a requirement called exclusive law. This paper does the equivalent for the three-way relaying scenario. We show that when the three users transmit points from the same 4-PSK constellation, every such network coding map that satisfies the exclusive law can be represented by a Latin Cube of Second Order. The network code map used by the relay for the BC phase is explicitly obtained and is aimed at reducing the effect of interference at the MA stage.
Resumo:
Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.
Resumo:
The functional source coding problem in which the receiver side information (Has-set) and demands (Want-set) include functions of source messages is studied using row-Latin rectangle. The source transmits encoded messages, called the functional source code, in order to satisfy the receiver's demands. We obtain a minimum length using the row-Latin rectangle. Next, we consider the case of transmission errors and provide a necessary and sufficient condition that a functional source code must satisfy so that the receiver can correctly decode the values of the functions in its Want-set.