108 resultados para Laplace inverse transform
Resumo:
Using analysis-by-synthesis (AbS) approach, we develop a soft decision based switched vector quantization (VQ) method for high quality and low complexity coding of wideband speech line spectral frequency (LSF) parameters. For each switching region, a low complexity transform domain split VQ (TrSVQ) is designed. The overall rate-distortion (R/D) performance optimality of new switched quantizer is addressed in the Gaussian mixture model (GMM) based parametric framework. In the AbS approach, the reduction of quantization complexity is achieved through the use of nearest neighbor (NN) TrSVQs and splitting the transform domain vector into higher number of subvectors. Compared to the current LSF quantization methods, the new method is shown to provide competitive or better trade-off between R/D performance and complexity.
Time-dependent flows of rotating and stratified fluids in geometries with non-uniform cross-sections
Resumo:
Unsteady rotating and stratified flows in geometries with non-uniform cross-sections are investigated under Oseen approximation using Laplace transform technique. The solutions are obtained in closed form and they reveal that the flow remains oscillatory even after infinitely large time. The existence of inertial waves propagating in both positive and negative directions of the flow is observed. When the Rossby or Froude number is close to a certain infinite set of critical values the blocking and back flow occur and the flow pattern becomes more and more complicated with increasing number of stagnant zones when each critical value is crossed. The analogy that is observed in the solutions for rotating and stratified flows is also discussed.
Resumo:
The Fourier transforms of the collagen molecular structure have been calculated taking into consideration various side chain atoms, as well as the presence of bound water molecules. There is no significant change in the calculated intensity distribution on including the side chain atoms of non-imino-acid residues. Taking into account the presence of about two bound water molecules per tripeptide unit, the agreement with the observed x-ray pattern is slightly improved. Fourier transforms have also been calculated for the detailed molecular geometries proposed from other laboratories. It is found that there are no major differences between them, as compared to our structure, either in the positions of peak intensity or in the intensity distribution. Hence it is not possible to judge the relative merits of the various molecular geometries for the collagen triple helix from a comparison of the calculated transforms with the meagre data available from its x-ray fibre pattern. It is also concluded that the collagen molecular structure should be regarded as a somewhat flexible chain structure, capable of adapting itself to the requirements of the different side groups which occur in each local region.
Resumo:
We investigate the use of a two stage transform vector quantizer (TSTVQ) for coding of line spectral frequency (LSF) parameters in wideband speech coding. The first stage quantizer of TSTVQ, provides better matching of source distribution and the second stage quantizer provides additional coding gain through using an individual cluster specific decorrelating transform and variance normalization. Further coding gain is shown to be achieved by exploiting the slow time-varying nature of speech spectra and thus using inter-frame cluster continuity (ICC) property in the first stage of TSTVQ method. The proposed method saves 3-4 bits and reduces the computational complexity by 58-66%, compared to the traditional split vector quantizer (SVQ), but at the expense of 1.5-2.5 times of memory.
Resumo:
While performing a mission, multiple Unmanned Aerial Vehicles (UAVs) need to avoid each other to prevent collisions among them. In this paper, we design a collision avoidance algorithm to resolve the conflict among UAVs that are on a collision course while flying to heir respective destinations. The collision avoidance algorithm consist of each UAV that is on a collision course reactively executing a maneuver that will, as in `inverse' Proportional Navigation (PN), increase Line of Sight (LOS) rate between them, resulting in a `pulling out' of collision course. The algorithm is tested for high density traffic scenarios as well as for robustness in the presence of noise.
Resumo:
Among the iterative schemes for computing the Moore — Penrose inverse of a woll-conditioned matrix, only those which have an order of convergence three or two are computationally efficient. A Fortran programme for these schemes is provided.
Resumo:
We propose a self-regularized pseudo-time marching strategy for ill-posed, nonlinear inverse problems involving recovery of system parameters given partial and noisy measurements of system response. While various regularized Newton methods are popularly employed to solve these problems, resulting solutions are known to sensitively depend upon the noise intensity in the data and on regularization parameters, an optimal choice for which remains a tricky issue. Through limited numerical experiments on a couple of parameter re-construction problems, one involving the identification of a truss bridge and the other related to imaging soft-tissue organs for early detection of cancer, we demonstrate the superior features of the pseudo-time marching schemes.
Resumo:
Swarm Intelligence techniques such as particle swarm optimization (PSO) are shown to be incompetent for an accurate estimation of global solutions in several engineering applications. This problem is more severe in case of inverse optimization problems where fitness calculations are computationally expensive. In this work, a novel strategy is introduced to alleviate this problem. The proposed inverse model based on modified particle swarm optimization algorithm is applied for a contaminant transport inverse model. The inverse models based on standard-PSO and proposed-PSO are validated to estimate the accuracy of the models. The proposed model is shown to be out performing the standard one in terms of accuracy in parameter estimation. The preliminary results obtained using the proposed model is presented in this work.
Resumo:
A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.
Resumo:
We present a signal processing approach using discrete wavelet transform (DWT) for the generation of complex synthetic aperture radar (SAR) images at an arbitrary number of dyadic scales of resolution. The method is computationally efficient and is free from significant system-imposed limitations present in traditional subaperture-based multiresolution image formation. Problems due to aliasing associated with biorthogonal decomposition of the complex signals are addressed. The lifting scheme of DWT is adapted to handle complex signal approximations and employed to further enhance the computational efficiency. Multiresolution SAR images formed by the proposed method are presented.
Resumo:
We derive expressions for convolution multiplication properties of discrete cosine transform II (DCT II) starting from equivalent discrete Fourier transform (DFT) representations. Using these expressions, a method for implementing linear filtering through block convolution in the DCT II domain is presented. For the case of nonsymmetric impulse response, additional discrete sine transform II (DST II) is required for implementing the filter in DCT II domain, where as for a symmetric impulse response, the additional transform is not required. Comparison with recently proposed circular convolution technique in DCT II domain shows that the proposed new method is computationally more efficient.
Resumo:
The images of Hermite and Laguerre-Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterized. These are used to characterize the image of Schwartz class of rapidly decreasing functions f on R-n and C-n under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for the windowed (short-time) Fourier transform is proved.
Resumo:
Given a real-valued function on R-n we study the problem of recovering the function from its spherical means over spheres centered on a hyperplane. An old paper of Bukhgeim and Kardakov derived an inversion formula for the odd n case with great simplicity and economy. We apply their method to derive an inversion formula for the even n case. A feature of our inversion formula, for the even n case, is that it does not require the Fourier transform of the mean values or the use of the Hilbert transform, unlike the previously known inversion formulas for the even n case. Along the way, we extend the isometry identity of Bukhgeim and Kardakov for odd n, for solutions of the wave equation, to the even n case.
Resumo:
Considering a general linear model of signal degradation, by modeling the probability density function (PDF) of the clean signal using a Gaussian mixture model (GMM) and additive noise by a Gaussian PDF, we derive the minimum mean square error (MMSE) estimator. The derived MMSE estimator is non-linear and the linear MMSE estimator is shown to be a special case. For speech signal corrupted by independent additive noise, by modeling the joint PDF of time-domain speech samples of a speech frame using a GMM, we propose a speech enhancement method based on the derived MMSE estimator. We also show that the same estimator can be used for transform-domain speech enhancement.
Resumo:
In this paper an approach for obtaining depth and section modulus of the cantilever sheet pile wall using inverse reliability method is described. The proposed procedure employs inverse first order reliability method to obtain the design penetration depth and section modulus of the steel sheet pile wall in order that the reliability of the wall against failure modes must meet a desired level of safety. Sensitivity analysis is conducted to assess the effect of uncertainties in design parameters on the reliability of cantilever sheet pile walls. The analysis is performed by treating back fill soil properties, depth of the water table from the top of the sheet pile wall, yield strength of steel and section modulus of steel pile as random variables. Two limit states, viz., rotational and flexural failure of sheet pile wall are considered. The results using this approach are used to develop a set of reliability based design charts for different coefficients of variation of friction angle of the backfill (5%, 10% and 15%). System reliability considerations in terms of series and parallel systems are also studied.