241 resultados para Lactose-specific lectin


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abrin is a type II ribosome-inactivating protein comprising of two subunits, A and B. Of the two, the A-subunit harbours the RNA-N-glycosidase activity and the B subunit is a galactose specific lectin that enables the entry of the protein inside the cell. Abrin inhibits protein synthesis and has been reported to induce apoptosis in several cell types. Based on these observations abrin is considered to have potential for the construction of immunotoxin in cell targeted therapy. Preliminary data from our laboratory however showed that although abrin inhibited the protein synthesis in all cell types, the mode of cell death varied. The aim of the present study was therefore to understand different death pathways induced by abrin in different cells. We used the human B cell line, U266B1 and compared it with the earlier studied T cell line Jurkat, for abrin-mediated inhibition of protein translation as well as cell death. While abrin triggered programmed apoptosis in Jurkat cells in a caspase-dependent manner, it induced programmed necrosis in U266B1 cells in a caspase-independent manner, even when there was reactive oxygen species production and loss of mitochondrial membrane potential. The data revealed that abrin-mediated necrosis involves lysosomal membrane permeabilization and release of cathepsins from the lysosomes. Importantly, the choice of abrin-mediated death pathway in the cells appears to depend on which of the two events occurs first: lysosomal membrane permeabilization or loss of mitochondrial membrane potential that decides cell death by necrosis or apoptosis. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abrin, a type II ribosome-inactivating protein, comprises A and B subunits wherein the A subunit harbours toxin activity and the B subunit has a galactose-specific lectin activity. The entry of the protein inside the cell is through the binding of the B chain to cell surface glycoproteins followed by receptor-mediated endocytosis and retrograde transport. A previous study from our laboratory showed that different cell lines exhibited differences of as great as similar to 200-fold in abrin toxicity, prompting the present study to compare the trafficking of the toxin within cells. Observations made in this regard revealed that the abrin A chain, after being released into the cytosol, is sequestered into the nucleus through interaction with a cellular protein of similar to 25 kDa, BASP1 (brain acid-soluble protein 1). The nuclear localization of the A chain is seen predominantly in cells that are less sensitive to abrin toxicity and dependent on the levels of BASP1 in cells. The sequestration by BASP1 renders cells increasingly resistant to the inhibition of protein synthesis by abrin and the nucleus act as a sink to overcome cellular stress induced

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A galactose-specific protein (RC1) isolated from Ricinus communis beans was found to give a precipitin reaction with concanavalin A. Its carbohydrate content amounted to 8–9% of the total protein and was found to be rich in mannose. The interaction of RC1 with galactose and lactose was measured in 0.05 M phosphate buffer containing 0.2 M NaCl (pH 6.8) by the method of conventional equilibrium dialysis. From the analysis of the binding data according to Scatchard method the association constant (Ka) at 5°C was calculated as 3.8 mM−1 and 1.2 mM−1 for lactose and galactose, respectively. In both cases the number of binding sites per molecule of RC1 with molecular weight of 120000 was found to be 2. From the temperature-dependent Ka values for the binding of lactose, the values of –5.7 kcal/mol and –4.3 cal × mol−1× K−1 were calculated for ΔH and ΔS, respectively. The addition of concanavalin A to RC1 or vice versa led to the formation of the insoluble complex RC1· ConA4 containing one molecule of RC1 and one molecule of tetrameric concanavalin A (ConA4) which could be dissociated upon addition of concanavalin A-specific sugars. The complex formation results in a time-dependent appearance of turbidity in the time range from 10s to 10 min. From the measurement of the time-dependent appearance and disappearance of the turbidity the formation (kf) and dissociation (kd) rate constants were calculated as 3 mM−1× s−1 and 0.07 ks−1 respectively. The ratio kf/kd (43μM −1), that corresponds to the association constant of complex RC1· ConA4, is higher than that of mannoside · ConA4 and thereby suggests that protein-protein interaction contributes significantly in stabilising glycoprotein · lectin complexes. The relevance of this finding to the understanding of the chemical specificities that are involved in a model cell-lectin interaction is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polarization of ligand fluorescence was used to study the binding of 4-methylumbelliferyl beta-D-galactopyranoside (MeUmb-Galp) to Abrus precatorious agglutinin. The binding of the fluorescent sugar to the lectin led to considerable polarization of the MeUmb-Galp fluorescence, which was also quenched by about 30% on binding to the lectin. The binding of the fluorescent sugar was carbohydrate-specific, as evidenced by inhibition of both fluorescence polarization and quenching when lectin was preincubated with lactose. The association constant as determined by fluorescence polarization is 1.42 x 10(4) M-1 at 25 degrees C and is in excellent agreement with those determined by fluorescence quenching (Ka = 1.51 x 10(4) M-1) and equilibrium dialysis (Ka = 1.62 x 10(4) M-1) at 25 degrees C. The numbers of binding sites as determined by fluorescence polarization, quenching and equilibrium dialysis agree very well with one another, n being equal to 2.0 +/- 0.05. The consistency between the association constant value determined by fluorescence polarization, quenching and equilibrium dialysis shows the validity of this approach to study lectin-sugar interaction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crystal structure of a lectin purified from Butea monosperma seeds was determined by Molecular Replacement method. Its primary structure was determined by Tandem Mass Spectroscopy and electron density maps from X-ray diffraction data. Its quaternary structure was tetrameric, formed of two monomers, alpha and beta, beta appearing as truncated alpha. The occurrence of two tetramers in the asymmetric unit of the crystal might be a consequence of asymmetric contacts due to difference in glycosylation and variable loops structures, to form an `octamer-structure'. The crystal structure showed binding pockets for gamma Abu, having a proposed role in plant defense, at the interface of canonical dimer-partners. Hemagglutination studies, enzyme kinetics, isothermal titration calorimetry and molecular dynamics showed that the lectin is specific to N-acetyl D-galactosamine, galactose and lactose in decreasing order, and alpha-amylase inhibitor. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isothermal titration calorimetry measurements of the binding of 2′-fucosyllactose, lactose, N-acetyllactosamine, galactopyranose, 2-acetamido-2-deoxygalactopyranoside, methyl α-N-dansylgalactosaminide (Me-α-DNS-GalN), methyl α-D-galactopyranoside, methyl β-D-galactopyranoside, and fucose to Erythrina corallodendron lectin (ECorL), a dimer with one binding site per subunit, were performed at 283-286 and 297-299 K. The site binding enthalpies, ΔHb, with the exception of Me-α-DNS-GalN, are the same at both temperatures and range from −47.1 ± 1.0 kJ mol−1 for N-acetyllactosamine to −4.4 ± 0.3 kJ mol−1 for fucose, and the site binding constants range from 3.82 ± 0.9 × 105 M−1 for Me-α-DNS-GalN at 283.2 K to 0.46 ± 0.05 × 103 M−1 for fucose at 297.2 K. The binding reactions are mainly enthalpically driven except for fucose and exhibit enthalpy-entropy compensation. The binding enthalpies of the disaccharides are about twice the binding enthalpies of the monosaccharides in contrast to concanavalin A where the binding enthalpies do not double for the disaccharides. Differential scanning calorimetry measurements show that denaturation of the ECorL dimer results in dissociation into its monomer subunits. The binding constants from the increase in denaturation temperature of ECorL in the presence of saccharides are in agreement with values from isothermal titration calorimetry results. The thermal denaturation of ECorL occurs around 333 K, well below the 344-360 K denaturation temperature of other legume lectins of similar size and tertiary structure, undoubtedly due to the difference in its quaternary structure relative to other legume lectins. This is also apparent from the independent unfolding of its two domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mannose-binding lectin (RVL) was purified from the tubers of Remusatia vivipara, a monocot plant by single-step affinity chromatography on asialofetuin-Sepharose 4B. RVL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, asialofetuin and thyroglobulin. Lectin activity was stable up to 80A degrees C and under wide range of pH (2.0-9.3). SDS-PAGE and gel filtration results showed the lectin is a homotetramer of Mr 49.5 kDa, but MALDI analysis showed two distinct peaks corresponding to subunit mass of 12 kDa and 12.7 kDa. Also the N-terminal sequencing gave two different sequences indicating presence of two polypeptide chains. Cloning of RVL gene indicated posttranslational cleavage of RVL precursor into two mature polypeptides of 116 and 117 amino-acid residues. Dynamic light scattering (DLS) and gel filtration studies together confirmed the homogeneity of the purified lectin and supported RVL as a dimer with Mr 49.5 kDa derived from single polypeptide precursor of 233 amino acids. Purified RVL exerts potent nematicidal activity on Meloidogyne incognita, a root knot nematode. Fluorescent confocal microscopic studies demonstrated the binding of RVL to specific regions of the alimentary-tract and exhibited a potent toxic effect on M. incognita. RVL-mucin complex failed to interact with the gut confirming the receptor mediated lectin interaction. Very high mortality (88%) rate was observed at lectin concentration as low as 30 A mu g/ml, suggesting its potential application in the development of nematode resistant transgenic-crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Earlier we reported that an oral administration of two mannose-specific dietary lectins, banana lectin (BL) and garlic lectin (GL), led to an enhancement of hematopoietic stem and progenitor cell (HSPC) pool in mice. STUDY DESIGN AND METHODS: Cord blood–derived CD34+ HSPCs were incubated with BL, GL, Dolichos lectin (DL), or artocarpin lectin (AL) for various time periods in a serum- and growth factor–free medium and were subjected to various functional assays. Reactive oxygen species (ROS) levels were detected by using DCHFDA method. Cell fractionation was carried out using lectin-coupled paramagnetic beads. RESULTS: CD34+ cells incubated with the lectins for 10 days gave rise to a significantly higher number of colonies compared to the controls, indicating that all four lectins possessed the capacity to protect HSPCs in vitro. Comparative analyses showed that the protective ability of BL and GL was better than AL and DL and, therefore, further experiments were carried out with them. The output of long-term culture-initiating cell (LTC-IC) and extended LTC-IC assays indicated that both BL and GL protected primitive stem cells up to 30 days. The cells incubated with BL or GL showed a substantial reduction in the ROS levels, indicating that these lectins protect the HSPCs via antioxidant mechanisms. The mononuclear cell fraction isolated by lectin-coupled beads got enriched for primitive HSPCs, as reflected in the output of phenotypic and functional assays. CONCLUSION: The data show that both BL and GL protect the primitive HSPCs in vitro and may also serve as cost-effective HSPC enrichment tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process cascade leading to the final accommodation of the carbohydrate ligand in the lectin’s binding site comprises enthalpic and entropic contributions of the binding partners and solvent molecules. With emphasis on lactose, N-acetyllactosamine, and thiodigalactoside as potent inhibitors of binding of galactoside-specific lectins, the question was addressed to what extent these parameters are affected as a function of the protein. The microcalorimetric study of carbohydrate association to the galectin from chicken liver (CG-16) and the agglutinin from Viscum album (VAA) revealed enthalpy–entropy compensation with evident protein type-dependent changes for N-acetyllactosamine. Reduction of the entropic penalty by differential flexibility of loops or side chains and/or solvation properties of the protein will have to be reckoned with to assign a molecular cause to protein type-dependent changes in thermodynamic parameters for lectins sharing the same monosaccharide specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central question in biological chemistry is the minimal structural requirement of a protein that would determine its specificity and activity, the underlying basis being the importance of the entire structural element of a protein with regards to its activity vis a vis the overall integrity and stability of the protein. Although there are many reports on the characterization of protein folding/ unfolding intermediates, with considerable secondary structural elements but substantial loss of tertiary structure, none of them have been reported to show any activity toward their respective ligands. This may be a result of the conditions under which such intermediates have been isolated or due to the importance of specific structural elements for the activity. In this paper we report such an intermediate in the unfolding of peanut agglutinin that seems to retain, to a considerable degree, its carbohydrate binding specificity and activity. This result has significant implications on the molten globule state during the folding pathway(s) of proteins in general and the quaternary association in legume lectins in particular, where precise subunit topology is required for their biologic activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermodynamics of the binding of derivatives of galactose and lactose to a 14 kDa beta-galactoside-binding lectin (L-14) from sheep spleen has been studied in 10 nM phosphate/150 mM NaCl/10 mM beta-mercaptoethanol buffer, pH 7.4, and in the temperature range 285-300 K using titration calorimetry. The single-site binding constants of various sugars for the lectin were in the following order: N-acetyl-lactosamine thiodigalactoside > 4-methylumbelliferyl lactoside > lactose > 4-methylumbelliferyl alpha-D-galactoside > methyl-alpha-galactose > methyl-beta-galactose. Reactions were essentially enthalpically driven with the binding enthalpies ranging from -53.8 kJ/mol for thiodigalactoside at 301 K to -2.2 kJ/mol for galactose at 300 K, indicating that hydrogen-bonding and van der Waals interactions provide the major stabilization for these reactions. However, the binding of 4-methylumbelliferyl-alpha-D-galactose displays relatively favourable entropic contributions, indicating the existence of a non-polar site adjacent to the galactose-binding subsite. From the increments in the enthalpies for the binding of lactose, N-acetyl-lactosamine and thiodigalactoside relative to methyl-beta-galactose, the contribution of glucose binding in the subsite adjacent to that for galactose shows that glucose makes a major contribution to the stability of L-14 disaccharide complexes. Observation of enthalpy-entropy compensation for the recognition of saccharides such as lactose by L-14 and the absence of it for monosaccharides such as galactose, together with the lack of appreciable changes in the heat capacity (delta Cp), indicate that reorganization of water plays an important role in these reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The carbohydrate binding specificity of the basic lectin from winged bean (Psophocarpus tetragonolobus) was investigated by quantitative precipitin analysis using blood group A, B, H, Le and I substances and by precipitation inhibition with various mono- and oligosaccharides. The lectin precipitated best with A1 substances and moderately with B and A2 substances, but not with H or Le substances. Inhibition assays of lectin-blood group A1 precipitation demonstration that A substance-derived oligosaccharides having the common structure: d-Ga1NAcα(1 → 3)d-Gal-(β1 → Image ) to a d-Glc, were the best inhibitors and about 8 and 4 times more active than d-Ga1NAc and d-Ga1NAcα(1 → 3)d-Ga1, respectively. A difucosyl A-specific oligosaccharide (A-penta), a monofucosyl (A-tetra) and a non-fucosyl containing (A5 II) oligosaccharide, d-Ga1NAcα(1 → 3)d-Ga1β(1 → 3)d-G1cNAc, had almost the same reactivity, suggesting that the fucose linked to the sub-terminal d-Ga1 or to the third sugar, d-GlcNAc, from the non-reducing end made no contribution to the carbohydrate binding. Although a terminal non-reducing d-Ga1NAc or d-Ga1 residue was indispensible for binding, the lectin bound not only to these terminal non-reducing galactopyranosyl residues, but also showed increased binding to oligosaccharides in which it was bonded to a sub-terminal d-Ga1 joined to a d-GlcNAc residue, as in blood group A or B substances. This defines the site, thus far, as complementary to a disaccharide plus the β linkage to the third sugar (d-Glc or d-GlcNAc) from the non-reducing end. The role of the β(1 → 3) or β(1 → 4) linkage of the sub-terminal non-reducing d-Gal to the d-GlcNAc requires further study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n acidic lectin (WBA II) was isolated to homogeneity from the crude seed extract of the winged bean (Psophocarpus tetragonolobus) by affinity chromatography on lactosylaminoethyl-Bio-Gel. Binding of WBA II to human erythrocytes of type-A, -B and -O blood groups showed the presence of 10(5) receptors/cell, with high association constants (10(6)-10(8) M-1). Competitive binding studies with blood-group-specific lectins reveal that WBA II binds to H- and T-antigenic determinants on human erythrocytes. Affinity-chromatographic studies using A-, B-, H- and T-antigenic determinants coupled to an insoluble matrix confirm the specificity of WBA II towards H- and T-antigenic determinants. Inhibition of the binding of WBA II by various sugars show that N-acetylgalactosamine and T-antigenic disaccharide (Thomsen-Friedenreich antigen, Gal beta 1-3GalNAc) are the most potent mono- and di-saccharide inhibitors respectively. In addition, inhibition of the binding of WBA II to erythrocytes by dog intestine H-fucolipid prove that the lectin binds to H-antigenic determinant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is currently believed that an unsubstituted axial hydroxyl at the specificity-determining C-4 locus of galactose is indispensable for recognition by galactose/N-acetylgalactosamine-specific lectins. Titration calorimetry demonstrates that 4-methoxygalactose retains binding allegiance to the Moraceae lectin jacalin and the Leguminosae lectin, winged bean (basic) agglutinin (WBA I). The binding reactions were driven by dominant favorable enthalpic contributions and exhibited significant enthalpy-entropy compensation. Proton NMR titration of C-methoxygalactose with jacalin and WBA I resulted in broadening of the sugar resonances without any change in chemical shift. The alpha-and beta-anomers of 4-methoxygalactose were found to be in slow exchange with free and lectin-bound states. Both the anomers experience magnetically equivalent environments at the respective binding sites. The binding constants derived from the dependence of NMR line widths on 4-methoxygalactose concentration agreed well with those obtained from titration calorimetry. The results unequivocally demonstrate that the loci corresponding to the axially oriented C-4 hydroxyl group of galactose within the primary binding site of these lectins exhibit plasticity. These analyses suggest, for the first time, the existence of C-H ... O-type hydrogen-bond(s) in protein-carbohydrate interactions in general and between the C-4 locus of galactose derivative and the lectins jacalin and WBA I in particular.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence and stopped-flow spectrophotometric studies on three plant lectins fromPsophocarpus tetragonolobus (winged bean),Glycine max (soybean) andArtocarpus integrifolia (jack fruit) have been studied usingN-dansylgalactosamine as a fluorescent ligand. The best monosaccharide for the winged bean agglutinin I (WBA I) and soybean (SBA) is Me-agrGalNAc and for jack fruit agglutinin (JFA) is Me-agrGal. Examination of the percentage enhancement and association constants (1.51×106, 6.56×106 and 4.17×105 M–1 for SBA, WBA I and JFA, respectively) suggests that the combining regions of the lectins SBA and WBA I are apolar whereas that of JFA is polar. Thermodynamic parameters obtained for the binding of several monosaccharides to these lectins are enthalpically favourable. The binding of monosaccharides to these lectins suggests that the-OH groups at C-1, C-2, C-4 and C-6 in thed-galactose configuration are important loci for interaction with these lectins. An important finding is that the JFA binds specifically to Galß1-3GaINAc with much higher affinity than the other disaccharides which are structurally and topographically similar.The results of stopped-flow spectrometry on the binding ofN-dansylgalactosamine to these lectins are consistent with a bimolecular single step mechanism. The association rate constants (2.4×105, 1.3×104, and 11.7×105 M–1 sec–1 for SBA, WBA I and JFA, respectively) obtained are several orders of magnitude slower than the ones expected for diffusion controlled reactions. The dissociation rate constants (0.2, 3.2×10–2, 83.3 sec–1 for SBA, WBA I and JFA, respectively) obtained for the dissociation ofN-dansylgalactosamine from its lectin complex are slowest for SBA and WBA I when compared with any other lectin-ligand dissociation process.