176 resultados para Kinematic sensing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the algebraic locus of the coupler curve of a PRRP planar linkage, in this paper, a kinematic theory is developed for planar, radially foldable closed-loop linkages. This theory helps derive the previously invented building blocks, which consist of only two inter-connected angulated elements, for planar foldable structures. Furthermore, a special case of a circumferentially actuatable foldable linkage (which is different from the previously known cases) is derived from the theory, A quantitative description of some known and some new properties of planar foldable linkages, including the extent of foldability, shape-preservation of the interior polygons, multi-segmented assemblies and heterogeneous circumferential arrangemants, is also presented. The design equations derived here make the conception of even complex planar radially foldable linkages systematic and straightforward. Representative examples are presented to illustrate the usage of the design equations and the construction of prototypes. The current limitations and some possible extensions of the theory are also noted. (c) 2007, Elsevier Ltd. All ri-hts reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA amplification using Polymerase Chain Reaction (PCR) in a small volume is used in Lab-on-a-chip systems involving DNA manipulation. For few microliters of volume of liquid, it becomes difficult to measure and monitor the thermal profile accurately and reproducibly, which is an essential requirement for successful amplification. Conventional temperature sensors are either not biocompatible or too large and hence positioned away from the liquid leading to calibration errors. In this work we present a fluorescence based detection technique that is completely biocompatible and measures directly the liquid temperature. PCR is demonstrated in a 3 ILL silicon-glass microfabricated device using non-contact induction heating whose temperature is controlled using fluorescence feedback from SYBR green I dye molecules intercalated within sensor DNA. The performance is compared with temperature feedback using a thermocouple sensor. Melting curve followed by gel electrophoresis is used to confirm product specificity after the PCR cycles. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the R-T measurement of carbon nanotube bundles from room temperature down to 1 K. The resistance at a particular temperature depends on the diameter of the bundle. The larger the bundle diameter is, the lower the value of the resistance. The resistance increases with the decrease in temperature as in the case of carbon, carbon glass resistance thermometer, and carbon nanotubes reported in the literature. The rate of the variation of resistance depends on the resistance of the bundle at room temperature which can be explored for the low temperature thermometry. Overall, the resistance and the sensitivity of the bundle depend on the bundle diameter which can be monitored easily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured copper(II) oxide film was deposited using reactive DC magnetron sputtering. It has been characterized using XRD, EDAX, XPS, and FESEM. The grain size of copper oxide film was found to be 40-65 nm with size distribution. The entire study was divided into two parts. In the first part, the film has been studied for its response to alcohol at different temperatures to find the optimum sensing temperature, whereas in the second part, the film sensitivity to different alcohol concentrations were studied at fixed optimum operating temperature. The optimum temperature for the response of ethanol was observed to be 400 C,and the response for different concentrations was found to be almost linear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous common mode feedback (CMFB) circuits having high input impedance and low distortion are proposed. The proposed circuits are characterized for 0.18 mu m CMOS process with 1.8 V supply. Simulation results indicate that the proposed common mode detector consumes no standby power and CMFB circuit consumes 27-34% less power than previous high swing CMFB circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper makes explicit the relation between relative part position and kinematic freedom of the parts which is implicitly available in the literature. An extensive set of representative papers in the areas of assembly and kinematic modelling is reviewed to specifically identify how the ideas in the two areas are related and influencing the development of each other. The papers are categorised by the approaches followed in the specification, representation, and solution of the part relations. It is observed that the extent of the part geometry is not respected in modelling schemes and as a result, the causal flow of events (proximity–contact–mobility) during the assembling process is not realised in the existing modelling paradigms, which are focusing on either the relative positioning problem or the relative motion problem. Though an assembly is a static description of part configuration, achievement of this configuration requires availability of relative motion for bringing parts together during the assembly process. On the other hand, the kinematic freedom of a part depends on the nature of contacting regions with other parts in its static configuration. These two problems are thus related through the contact geometry. The chronology of the approaches that significantly contributed to the development of the subject is also included in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensing and photocatalysis of textile industry effluents such as dyes using mesoporous anatase titania nanowires are discussed here.Spectroscopic investigations show that the titania nanowires preferentially sense cationic (e.g. Methylene Blue, Rhodamine B) over anionic (e.g. Orange G, Remazol Brilliant Blue R) dyes. The adsorbed dye concentration on titania nanowires increased with increase in nanowire dimensions and dye solution pH. Electrochemical sensing directly corroborated spectroscopic findings. Electrochemical detection sensitivity for Methylene Blue increased by more than two times in magnitude with tripling of nanowire average length. Photodegradation of Methylene Blue using titania nanowires is also more efficient than the commercial P25-TiO2 nanopowders. Keeping illumination protocol and observation times constant, the Methylene Blue concentration in solution decreased by only 50% in case of P25-TiO2 nanoparticles compared to a 100% decrease for titania nanowires. Photodegradation was also found to be function of exposure times and dye solution pH.Excellent sensing ability and photocatalytic activity of the titania nanowires is attributed to increased effective reaction area of the controlled nanostructured morphology. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with grasping biological cells in aqueous medium with miniature grippers that can also help estimate forces using vision-based displacement measurement and computation. We present the design, fabrication, and testing of three single-piece, compliant miniature grippers with parallel and angular jaw motions. Two grippers were designed using experience and intuition, while the third one was designed using topology optimization with implicit manufacturing constraints. These grippers were fabricated using different manufacturing techniques using spring steel and polydimethylsiloxane ( PDMS). The grippers also serve the purpose of a force sensor. Toward this, we present a vision-based force-sensing technique by solving Cauchy's problem in elasticity using an improved algorithm. We validated this technique at the macroscale, where there was an independent method to estimate the force. In this study, the gripper was used to hold a yeast ball and a zebrafish egg cell of less than 1 mm in diameter. The forces involved were estimated to be about 30 and 10 mN for the yeast ball and the zebrafish egg cell, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas sensing characteristics of YBa2Cu3O7−δ, La2−x SrxCuO4, and Bi2Y1−xCaxSr2Cu2O8 have been examined. La2−x SrxCuO4 (x = 0.075), and Bi2YSr2Cu2O8 are found to show good sensitivity (≈10 ppm) to ethyl alcohol and such vapours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-area PVDF thin films have been prepared and characterized for quasi-static and high frequency dynamic strain sensing applications. These films are prepared using hot press method and the piezoelectric phase (beta-phase) has been achieved by thermo-mechanical treatment and poling under DC field. The fabricated films have been characterized for quasi-static strain sensing and the linear strain-voltage relationship obtained is promising. In order to evaluate the ultrasonic sensing properties, a PZT wafer has been used to launch Lamb waves in a metal beam on which the PVDF film sensor is bonded at a distance. The voltage signals obtained from the PVDF films have been compared with another PZT wafer sensor placed on the opposite surface of the beam as a reference signal. Due to higher stiffness and higher thickness of the PZT wafer sensors, certain resonance patterns significantly degrade the sensor sensitivity curves. Whereas, the present results show that the large-area PVDF sensors can be superior with the signal amplitude comparable to that of PZT sensors and with no resonance-induced effect, which is due to low mechanical impedance, smaller thickness and larger area of the PVDF film. Moreover, the developed PVDF sensors are able to capture both A(0) and S-0 modes of Lamb wave, whereas the PZT sensors captures only A(0) mode in the same scale of voltage output. This shows promises in using large-area PVDF films with various surface patterns on structures for distributed sensing and structural health monitoring under quasi-static, vibration and ultrasonic situations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Back face strain (BFS) measurement is now well-established as an indirect technique to monitor crack length in compact tension (CT) fracture specimens [1,2]. Previous work [2] developed empirical relations between fatigue crack propagation (FCP) parameters. BFS, and number of cycles for CT specimens subjected to constant amplitude fatigue loading. These predictions are experimentally validated in terms of the variations of mean values of BFS and load as a function of crack length. Another issue raised by this study concerns the validity of assigning fixed values for the Paris parameters C and n to describe FCP in realistic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing variability in device leakage has made the design of keepers for wide OR structures a challenging task. The conventional feedback keepers (CONV) can no longer improve the performance of wide dynamic gates for the future technologies. In this paper, we propose an adaptive keeper technique called rate sensing keeper (RSK) that enables faster switching and tracks the variation across different process corners. It can switch upto 1.9x faster (for 20 legs) than CONV and can scale upto 32 legs as against 20 legs for CONV in a 130-nm 1.2-V process. The delay tracking is within 8% across the different process corners. We demonstrate the circuit operation of RSK using a 32 x 8 register file implemented in an industrial 130-nm 1.2-V CMOS process. The performance of individual dynamic logic gates are also evaluated on chip for various keeper techniques. We show that the RSK technique gives superior performance compared to the other alternatives such as Conditional Keeper (CKP) and current mirror-based keeper (LCR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutral point clamped (NPC), three level converters with insulated gate bipolar transistor devices are very popular in medium voltage, high power applications. DC bus short circuit protection is usually done, using the sensed voltage across collector and emitter (i.e., V-CE sensing), of all the devices in a leg. This feature is accommodated with the conventional gate drive circuits used in the two level converters. The similar gate drive circuit, when adopted for NPC three level converter protection, leads to false V-CE fault signals for inner devices of the leg. The paper explains the detailed circuit behavior and reasons, which result in the occurrence of such false V-CE fault signals. This paper also illustrates that such a phenomenon shows dependence on the power factor of the supplied three-phase load. Finally, experimental results are presented to support the analysis. It is shown that the problem can be avoided by blocking out the V-CE sense fault signals of the inner devices of the leg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel high sensitive fiber Bragg grating (FBG) strain sensing technique using lasers locked to relative frequency reference is proposed and analyzed theoretically. Static strain on FBG independent of temperature can be measured by locking frequency of diode laser to the mid reflection frequency of matched reference FBG, which responds to temperature similar to that of the sensor FBG, but is immune to strain applied to the same. Difference between light intensities reflected from the sensor and reference FBGs (proportional to the difference between respective pass band gains at the diode laser frequency) is not only proportional to the relative strain between the sensor and reference FBGs but also independent of servo residual frequency errors. Usage of relative frequency reference avoids all complexities involved in the usage of absolute frequency reference, hence, making the system simple and economical. Theoretical limit for dynamic and static strain sensitivities considering all major noise contributions are of the order of 25 (p epsilon) / root Hz and 1.2 n epsilon / root Hz respectively.