23 resultados para Kaul, Adelina
Resumo:
Given the increasing aetiological importance of Streptococcus dysgalactiae subspecies equisimilis in diseases which are primarily attributed to S. pyogenes, molecular markers are essential to distinguish these species and delineate their epidemiology more precisely. Many clinical microbiology laboratories rely on agglutination reactivity and biochemical tests to distinguish them. These methods have limitations which are particularly exacerbated when isolates with mixed properties are encountered. In order to provide additional distinguishing parameters that could be used to unequivocally discriminate these two common pathogens, we assess here three molecular targets: the speB gene, intergenic region upstream of the scpG gene (IRSG) and virPCR. Of these, the former two respectively gave positive and negative results for S. pyogenes, and negative and positive results for S. dysgalactiae subsp. equisimilis. Thus,a concerted use of these nucleic acid-based methods is particularly helpful in epidemiological surveillance to accurately assess the relative contribution of these species to streptococcal infections and diseases.
Resumo:
Serine hydroxymethyltransferase (SHMT) belongs to the alpha-family of pyridoxal 5'-phosphate-dependent enzymes and catalyzes the reversible conversion of L-Ser and etrahydrofolate to Gly and 5,10-methylene tetrahydrofolate. 5,10-Methylene tetrahydrofolate serves as a source of one-carbon fragment in many biological processes. SHMT also catalyzes the tetrahydrofolate-independent conversion of L-allo-Thr to Gly and acetaldehyde. The crystal structure of Bacillus stearothermophilus SHMT (bsSHMT) suggested that E53 interacts with the substrate, L-Ser and etrahydrofolate. To elucidate the role of E53, it was mutated to Q and structural and biochemical studies were carried out with the mutant enzyme. The internal aldimine structure of E53QbsSHMT was similar to that of the except for significant changes at Q53, Y60 and Y61. The wild-type enzyme, carboxyl of Gly and side chain of L-Ser were in two conformations in the respective external aldimine structures. The mutant enzyme was completely inactive for tetrahydrofolate-depen dent cleavage of L-Ser, whereas there was a 1.5-fold increase in the rate of tetrahydrofolate-independent reaction with L-allo-Thr. The results obtained from these studies suggest that E53 plays an essential role in tetrahydrofolate/5-formyl tetrahydrofolate binding and in the proper positioning of C beta of L-Ser for direct attack by N5 of tetrahydrofolate. Most interestingly, the structure of the complex obtained by cocrystallization of E53QbsSHMT with Gly and 5-formyl tetrahydrofolate revealed the gem-diamine form of pyridoxal 5'-phosphate bound to Gly and active site Lys. However, density for 5-formyl tetrahydrofolate was not observed. Gly carboxylate was in a single conformation, whereas pyridoxal 5'-phosphate had two distinct conformations. The differences between the structures of this complex and Gly external aldimine suggest that the changes induced by initial binding of 5-formyl tetrahydrofolate are retained even though 5-formyl tetrahydrofolate is absent in the final structure. Spectral studies carried out with this mutant enzyme also suggest that 5-formyl tetrahydrofolate binds to the E53QbsSHMT-Gly complex forming a quinonoid intermediate and falls off within 4 h of dialysis, leaving behind the mutant enzyme in the gemdiamine form. This is the first report to provide direct evidence for enzyme memory based on the crystal structure of enzyme complexes.
Resumo:
Conditions for quantum topological invariance of classically topological field theories in the path integral formulation are discussed. Both the three-dimensional Chern-Simons system and a Witten-type topological field theory are shown to satisfy these conditions.
Resumo:
Infection of the skin or throat by Streptococcus dysgalactiae subspecies equisimilis (SDSE) may result in a number of human diseases. To understand mechanisms that give rise to new genetic variants in this species, we used multi-locus sequence typing (MLST) to characterise relationships in the SDSE population from India, a country where streptococcal disease is endemic. The study revealed Indian SDSE isolates have sequence types (STs) predominantly different to those reported from other regions of the world. Emm-ST combinations in India are also largely unique. Split decomposition analysis, the presence of emm-types in unrelated clonal complexes, and analysis of phylogenetic trees based on concatenated sequences all reveal an extensive history of recombination within the population. The ratio of recombination to mutation (r/m) events (11:1) and per site r/m ratio (41:1) in this population is twice as high as reported for SDSE from non-endemic regions. Recombination involving the emm-gene is also more frequent than recombination involving housekeeping genes, consistent with diversification of M proteins offering selective advantages to the pathogen. Our data demonstrate that genetic recombination in endemic regions is more frequent than non-endemic regions, and gives rise to novel local SDSE variants, some of which may have increased fitness or pathogenic potential.
Resumo:
Background and Purpose: Withanolides are naturally occurring chemical compounds. They are secondary metabolites produced via oxidation of steroids and structurally consist of a steroid-backbone bound to a lactone or its derivatives. They are known to protect plants against herbivores and have medicinal value including anti-inflammation, anti-cancer, adaptogenic and anti-oxidant effects. Withaferin A (Wi-A) and Withanone (Wi-N) are two structurally similar withanolides isolated from Withania somnifera, also known as Ashwagandha in Indian Ayurvedic medicine. Ashwagandha alcoholic leaf extract (i-Extract), rich in Wi-N, was shown to kill cancer cells selectively. Furthermore, the two closely related purified phytochemicals, Wi-A and Wi-N, showed differential activity in normal and cancer human cells in vitro and in vivo. We had earlier identified several genes involved in cytotoxicity of i-Extract in human cancer cells by loss-of-function assays using either siRNA or randomized ribozyme library. Methodology/Principal Findings: In the present study, we have employed bioinformatics tools on four genes, i.e., mortalin, p53, p21 and Nrf2, identified by loss-of-function screenings. We examined the docking efficacy of Wi-N and Wi-A to each of the four targets and found that the two closely related phytochemicals have differential binding properties to the selected cellular targets that can potentially instigate differential molecular effects. We validated these findings by undertaking parallel experiments on specific gene responses to either Wi-N or Wi-A in human normal and cancer cells. We demonstrate that Wi-A that binds strongly to the selected targets acts as a strong cytotoxic agent both for normal and cancer cells. Wi-N, on the other hand, has a weak binding to the targets; it showed milder cytotoxicity towards cancer cells and was safe for normal cells. The present molecular docking analyses and experimental evidence revealed important insights to the use of Wi-A and Wi-N for cancer treatment and development of new anti-cancer phytochemical cocktails.