30 resultados para K-R-I-T Motor Car Company
Resumo:
System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication K. R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R-3-in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293-311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7 x 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
CsHllNO2.C9HilNO2, Mr = 282.3, P1, a = 5.245 (1), b = 5.424 (1), c = 14.414 (2) A, a = 97.86 (1), fl = 93-69 (2), y = 70-48 (2) °, V= 356 A 3, Z = 1, O m = 1-32 (2), Dx = 1.32 g cm-3, h(Mo Ka) = 0-7107 A, g = 5-9 cm-1, F(000) = 158, T= 298 K, R=0.035 for 1518 observed reflections with I>2tr(I). The molecules aggregate in double layers, one ayer made up of L-phenylalanine molecules and the other of D-valine molecules. Each double layer is stabilized by interactions involving main-chain atoms of both types of molecules. The interactions include hydrogen bonds which give rise to two head-to-tail sequences. The arrangement of molecules in the complex is almost the same as that in the structure of DL-valine (and DL-leucine and DL-isoleucine) except for the change in the side chain of L molecules. The molecules in crystals containing an equal number of L and O hydrophobic amino-acid molecules thus appear to aggregate in a similar fashion, irrespective of the precise details of the side chain.
Resumo:
1. The metabolic disposition of R-(+)-pulegone (1) was examined in rats following four daily oral doses (250 mg/kg). 2. Six metabolites, namely pulegol (II), 2-hydroxy-2-(1-hydroxy-1-methylethyl)-5-methylcyclohexanone (III), 3,6-dimethyl-7a-hydroxy-5,6,7,7a-tetrahydro-2(4H)-benzofuranone (IV), menthofuran (V), 5-methyl-2-(1-methyl-1-carboxyethylidene)cyclohexanone (VI), and 5-methyl-5-hydroxy-2-(1-hydroxy-1-carboxyethyl)cyclohexanone (VII) have previously been isolated from rat urine, and identified (Moorthy et al. (1989a). Eight new metabolites have now been isolated from rat urine, namely, 5-hydroxy-pulegone (VIII), piperitone (IX), piperitenone (X), 7-hydroxy-piperitone (XI), 8-hydroxy piperitone (XII), p-cresol (XIII), geranic acid (XIV) and neronic acid (XV). These were identified by n.m.r., i.r. and mass spectrometry. 3. Based on these results, metabolic pathways for the biotransformation of R-(+)-pulegone in rat have been proposed.
Resumo:
We describe the use of poly(alpha-methylstyrene peroxide) (P alpha MSP), an alternating copolymer of alpha-methylstyrene and oxygen, as initiator for the radical polymerization of vinyl monomers. Thermal decomposition of P alpha MSP in 1,4-dioxane follows first-order kinetics with an activation energy (E(a)) of 34.6 kcal/mol. Polymerization of methyl methacrylate (MMA) and styrene using P alpha MSP as an initiator was carried out in the temperature range 60-90 degrees C. The kinetic order with respect to the initiator and the monomer was close to 0.5 and 1.0, respectively, for both monomers. The E(a) for the polymerization was 20.6 and 22.9 kcal/mol for MMA and styrene, respectively. The efficiency of P alpha MSP was found to be in the range 0.02-0.04. The low efficiency of P alpha MSP was explained in terms of the unimolecular decomposition of the alkoxy radicals which competes with primary radical initiation. The presence of peroxy segments in the main chain of PMMA and polystyrene was confirmed from spectroscopic and DSC studies. R(i)'/2I values for P alpha MSP compared to that of BPO at 80 degrees C indicate that P alpha MSP can be used as an effective high-temperature initiator.
Resumo:
Complexes of the formulation [(eta(6)-p-cymene)Ru(O-2-C6H4-CH=NC6H4-4-CH3)(L)](ClO4), where L is gamma-picoline, 4-vinylpyridine, 1-methylimidazole and 1-vinylimidazole have been prepared and characterised. The molecular structure of the vinylpyridine adduct has been determined by X-ray crystallography. The crystal belongs to the monoclinic space group P2(1) with the following cell dimensions for the C31H33CIN2O5Ru(M = 650.11): a = 10.890(2)Angstrom, b = 22.295(9)Angstrom, c = 12.930(2)Angstrom, beta = 109.30(2)degrees(3), V = 2964(l)Angstrom 3, Z = 4; D-c = 1.457g cm(-3), lambda(Mo-K alpha) = 0.7107 Angstrom; mu(Mo-K alpha)= 6.61 cm(-1); T = 293 K; R = 0.0359 (wR(2) = 0.0981) for 4819 reflections with I > 2 sigma(I). The structure shows the non-bonding nature of the double bond of the 4-vinylpyridine ligand in the complex in which the metal is bonded to the eta(6)-p-cymene, the N, O-bidentate chelating schiff-base and the unidentate N-donor pyridine ligands.
Resumo:
The quantum yield of I*((2)p(1/2)) production from CH3I photolysis at 236 nm in the gas phase has been measured as 0.69 +/- 0.03. The implication is that direct excitation to the (1)Q(1) excited state is significant at this wavelength. The dynamics of I* formation at other excitation energies covering the entire A-band of absorption of CH3I has been discussed in the light of this measurement.
Resumo:
A k-dimensional box is a Cartesian product R(1)x...xR(k) where each R(i) is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. That is, two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of arcs on a circle. We show that if G is a circular arc graph which admits a circular arc representation in which no arc has length at least pi(alpha-1/alpha) for some alpha is an element of N(>= 2), then box(G) <= alpha (Here the arcs are considered with respect to a unit circle). From this result we show that if G has maximum degree Delta < [n(alpha-1)/2 alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. We also demonstrate a graph having box(G) > alpha but with Delta = n (alpha-1)/2 alpha + n/2 alpha(alpha+1) + (alpha+2). For a proper circular arc graph G, we show that if Delta < [n(alpha-1)/alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. Let r be the cardinality of the minimum overlap set, i.e. the minimum number of arcs passing through any point on the circle, with respect to some circular arc representation of G. We show that for any circular arc graph G, box(G) <= r + 1 and this bound is tight. We show that if G admits a circular arc representation in which no family of k <= 3 arcs covers the circle, then box(G) <= 3 and if G admits a circular arc representation in which no family of k <= 4 arcs covers the circle, then box(G) <= 2. We also show that both these bounds are tight.
Resumo:
Two different experimental studies of polymer dynamics based on single-molecule fluorescence imaging have recently found evidence of heterogeneities in the widths of the putative tubes that surround filaments of F-actin during their motion in concentrated solution. In one J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchesner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)], the observations were explained in terms of the statistics of a worm-like chain confined to a potential determined self-consistently by a binary collision approximation, and in the other B. Wang, J. Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010)], they were explained in terms of the scaling properties of a random fluid of thin rods. In this paper, we show, using an exact path integral calculation, that the distribution of the length-averaged transverse fluctuations of a harmonically confined weakly bendable rod (one possible realization of a semiflexible chain in a tube), is in good qualitative agreement with the experimental data, although it is qualitatively different in analytic structure from the earlier theoretical predictions. We also show that similar path integral techniques can be used to obtain an exact expression for the time correlation function of fluctuations in the tube cross section. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4712306]
Resumo:
A unit cube in (or a k-cube in short) is defined as the Cartesian product R (1) x R (2) x ... x R (k) where R (i) (for 1 a parts per thousand currency sign i a parts per thousand currency sign k) is a closed interval of the form a (i) , a (i) + 1] on the real line. A k-cube representation of a graph G is a mapping of the vertices of G to k-cubes such that two vertices in G are adjacent if and only if their corresponding k-cubes have a non-empty intersection. The cubicity of G is the minimum k such that G has a k-cube representation. From a geometric embedding point of view, a k-cube representation of G = (V, E) yields an embedding such that for any two vertices u and v, ||f(u) - f(v)||(a) a parts per thousand currency sign 1 if and only if . We first present a randomized algorithm that constructs the cube representation of any graph on n vertices with maximum degree Delta in O(Delta ln n) dimensions. This algorithm is then derandomized to obtain a polynomial time deterministic algorithm that also produces the cube representation of the input graph in the same number of dimensions. The bandwidth ordering of the graph is studied next and it is shown that our algorithm can be improved to produce a cube representation of the input graph G in O(Delta ln b) dimensions, where b is the bandwidth of G, given a bandwidth ordering of G. Note that b a parts per thousand currency sign n and b is much smaller than n for many well-known graph classes. Another upper bound of b + 1 on the cubicity of any graph with bandwidth b is also shown. Together, these results imply that for any graph G with maximum degree Delta and bandwidth b, the cubicity is O(min{b, Delta ln b}). The upper bound of b + 1 is used to derive upper bounds for the cubicity of circular-arc graphs, cocomparability graphs and AT-free graphs in terms of the maximum degree Delta.
Resumo:
The results of an experimental investigation of 1 keV electron irradiation of ices (deposited at 30 K) of (i) pure methanol and (ii) of a 1:1 mixture of NH3:CH3OH are reported. Molecular products formed within the ice were detected and monitored using FTIR spectroscopy. The products observed were methyl formate (H3COHCO), methane (CH4), hydroxymethyl (CH2OH), formamide (HCONH2), formic acid (HCOOH), formaldehyde (H2CO), formyl radical (HCO), cyanate ion (OCN-), isocyanic acid (HNCO), carbon monoxide (CO) and carbon dioxide (CO2). The consequences of these results for prebiotic chemistry in the interstellar medium and star forming regions are discussed. Crown Copyright (C) 2012 Published by Elsevier B. V. All rights reserved.
Resumo:
We report the low temperature electrical and magnetic properties of polypyrrole (PPy)/multiwall carbon nanotube (MWNT) coaxial composite fibrils synthesized by the electro-polymerization method. The iron-filled MWNTs were first grown by chemical vapor deposition of a mixture of liquid phase organic compound and ferrocene by the one step method. Then the PPy/MWNT fibrils were prepared by the electrochemical polymerization process. Electron microscopy studies reveal that PPy coating on the surface of nanotube is quite uniform throughout the length. The temperature dependent electrical resistivity and magnetization measurements were done from room temperature down to 5 and 10 K, respectively. The room temperature resistivity (rho) of PPy/MWNT composite fibril sample is similar to 3.8 Omega m with resistivity ratio R-5 K/R-300 K] of similar to 300, and the analysis of rho(T) in terms of reduced activation energy shows that resistivity lies in the insulating regime below 40 K. The resistivity varies according to three dimensional variable range hopping mechanism at low temperature. The magnetization versus applied field (M-H loop) data up to a field of 20 kOe are presented, displaying ferromagnetic behavior at all temperatures with enhanced coercivities similar to 680 and 1870 Oe at room temperature and 10 K, respectively. The observation of enhanced coercivity is due to significant dipolar interaction among encapsulated iron nanoparticles, and their shape anisotropy contribution as well.
Resumo:
Recent experimental measurements of the distribution P(w) of transverse chain fluctuations w in concentrated solutions of F-actin filaments B. Wang, J Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010); J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchgessner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)] are shown to be well-fit to an expression derived from a model of the conformations of a single harmonically confined weakly bendable rod. The calculation of P(w) is carried out essentially exactly within a path integral approach that was originally applied to the study of one-dimensional randomly growing interfaces. Our results are generally as successful in reproducing experimental trends as earlier approximate results obtained from more elaborate many-chain treatments of the confining tube potential.
Resumo:
Recent experimental measurements of the distribution P(w) of transverse chain fluctuations w in concentrated solutions of F-actin filaments B. Wang, J Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010); J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchgessner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)] are shown to be well-fit to an expression derived from a model of the conformations of a single harmonically confined weakly bendable rod. The calculation of P(w) is carried out essentially exactly within a path integral approach that was originally applied to the study of one-dimensional randomly growing interfaces. Our results are generally as successful in reproducing experimental trends as earlier approximate results obtained from more elaborate many-chain treatments of the confining tube potential. (C) 2013 AIP Publishing LLC.
Resumo:
An axis-parallel b-dimensional box is a Cartesian product R-1 x R-2 x ... x R-b where R-i is a closed interval of the form a(i),b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension b, such that G is representable as the intersection graph of boxes in b-dimensional space. Although boxicity was introduced in 1969 and studied extensively, there are no significant results on lower bounds for boxicity. In this paper, we develop two general methods for deriving lower bounds. Applying these methods we give several results, some of which are listed below: 1. The boxicity of a graph on n vertices with no universal vertices and minimum degree delta is at least n/2(n-delta-1). 2. Consider the g(n,p) model of random graphs. Let p <= 1 - 40logn/n(2.) Then with high `` probability, box(G) = Omega(np(1 - p)). On setting p = 1/2 we immediately infer that almost all graphs have boxicity Omega(n). Another consequence of this result is as follows: For any positive constant c < 1, almost all graphs on n vertices and m <= c((n)(2)) edges have boxicity Omega(m/n). 3. Let G be a connected k-regular graph on n vertices. Let lambda be the second largest eigenvalue in absolute value of the adjacency matrix of G. Then, the boxicity of G is a least (kappa(2)/lambda(2)/log(1+kappa(2)/lambda(2))) (n-kappa-1/2n). 4. For any positive constant c 1, almost all balanced bipartite graphs on 2n vertices and m <= cn(2) edges have boxicity Omega(m/n).