22 resultados para Japan -- Military policy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in technology have increased the number of cores and size of caches present on chip multicore platforms(CMPs). As a result, leakage power consumption of on-chip caches has already become a major power consuming component of the memory subsystem. We propose to reduce leakage power consumption in static nonuniform cache architecture(SNUCA) on a tiled CMP by dynamically varying the number of cache slices used and switching off unused cache slices. A cache slice in a tile includes all cache banks present in that tile. Switched-off cache slices are remapped considering the communication costs to reduce cache usage with minimal impact on execution time. This saves leakage power consumption in switched-off L2 cache slices. On an average, there map policy achieves 41% and 49% higher EDP savings compared to static and dynamic NUCA (DNUCA) cache policies on a scalable tiled CMP, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers a firm real-time M/M/1 system, where jobs have stochastic deadlines till the end of service. A method for approximately specifying the loss ratio of the earliest-deadline-first scheduling policy along with exit control through the early discarding technique is presented. This approximation uses the arrival rate and the mean relative deadline, normalized with respect to the mean service time, for exponential and uniform distributions of relative deadlines. Simulations show that the maximum approximation error is less than 4% and 2% for the two distributions, respectively, for a wide range of arrival rates and mean relative deadlines. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we present an exact theoretical analysis of an system, with arbitrary distribution of relative deadline for the end of service, operated under the first come first served scheduling policy with exact admission control. We provide an explicit solution to the functional equation that must be satisfied by the workload distribution, when the system reaches steady state. We use this solution to derive explicit expressions for the loss ratio and the sojourn time distribution. Finally, we compare this loss ratio with that of a similar system operating without admission control, in the cases of some common distributions of the relative deadline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of optimal sequential (''as-you-go'') deployment of wireless relay nodes, as a person walks along a line of random length (with a known distribution). The objective is to create an impromptu multihop wireless network for connecting a packet source to be placed at the end of the line with a sink node located at the starting point, to operate in the light traffic regime. In walking from the sink towards the source, at every step, measurements yield the transmit powers required to establish links to one or more previously placed nodes. Based on these measurements, at every step, a decision is made to place a relay node, the overall system objective being to minimize a linear combination of the expected sum power (or the expected maximum power) required to deliver a packet from the source to the sink node and the expected number of relay nodes deployed. For each of these two objectives, two different relay selection strategies are considered: (i) each relay communicates with the sink via its immediate previous relay, (ii) the communication path can skip some of the deployed relays. With appropriate modeling assumptions, we formulate each of these problems as a Markov decision process (MDP). We provide the optimal policy structures for all these cases, and provide illustrations of the policies and their performance, via numerical results, for some typical parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In underlay cognitive radio (CR), a secondary user (SU) can transmit concurrently with a primary user (PU) provided that it does not cause excessive interference at the primary receiver (PRx). The interference constraint fundamentally changes how the SU transmits, and makes link adaptation in underlay CR systems different from that in conventional wireless systems. In this paper, we develop a novel, symbol error probability (SEP)-optimal transmit power adaptation policy for an underlay CR system that is subject to two practically motivated constraints, namely, a peak transmit power constraint and an interference outage probability constraint. For the optimal policy, we derive its SEP and a tight upper bound for MPSK and MQAM constellations when the links from the secondary transmitter (STx) to its receiver and to the PRx follow the versatile Nakagami-m fading model. We also characterize the impact of imperfectly estimating the STx-PRx link on the SEP and the interference. Extensive simulation results are presented to validate the analysis and evaluate the impact of the constraints, fading parameters, and imperfect estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a simulation-based algorithm for computing the optimal pricing policy for a product under uncertain demand dynamics. We consider a parameterized stochastic differential equation (SDE) model for the uncertain demand dynamics of the product over the planning horizon. In particular, we consider a dynamic model that is an extension of the Bass model. The performance of our algorithm is compared to that of a myopic pricing policy and is shown to give better results. Two significant advantages with our algorithm are as follows: (a) it does not require information on the system model parameters if the SDE system state is known via either a simulation device or real data, and (b) as it works efficiently even for high-dimensional parameters, it uses the efficient smoothed functional gradient estimator.