253 resultados para Isotropic Käher Manifold
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The proton NMR spectral complexity arising due to severe overlap of peaks hampers their analyses in diverse situations, even by the application of two-dimensional experiments. The selective or complete removal of the couplings and retention of only the chemical shift interactions in indirect dimension aids in the simplification of the spectrum to a large extent with little investment of the instrument time. The present study provides precise enantiodiscrimination employing more anisotropic NMR parameters in the chiral liquid crystalline medium and differentiates the overlapped peaks of many organic molecules and peptides dissolved in isotropic solvents.
Resumo:
The shock manifold equation is a first order nonlinear partial differential equation, which describes the kinematics of a shockfront in an ideal gas with constant specific heats. However, it was found that there was more than one of these shock manifold equations, and the shock surface could be embedded in a one parameter family of surfaces, obtained as a solution of any of these shock manifold equations. Associated with each shock manifold equation is a set of characteristic curves called lsquoshock raysrsquo. This paper investigates the nature of various associated shock ray equations.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration.
Resumo:
Proper formulation of stress-strain relations, particularly in tension-compression situations for isotropic biomodulus materials, is an unresolved problem. Ambartsumyan's model [8] and Jones' weighted compliance matrix model [9] do not satisfy the principle of coordinate invariance. Shapiro's first stress invariant model [10] is too simple a model to describe the behavior of real materials. In fact, Rigbi [13] has raised a question about the compatibility of bimodularity with isotropy in a solid. Medri [2] has opined that linear principal strain-principal stress relations are fictitious, and warned that the bilinear approximation of uniaxial stress-strain behavior leads to ill-working bimodulus material model under combined loading. In the present work, a general bilinear constitutive model has been presented and described in biaxial principal stress plane with zonewise linear principal strain-principal stress relations. Elastic coefficients in the model are characterized based on the signs of (i) principal stresses, (ii) principal strains, and (iii) on the value of strain energy component ratio ER greater than or less than unity. The last criterion is used in tension-compression and compression-tension situations to account for different shear moduli in pure shear stress and pure shear strain states as well as unequal cross compliances.
Resumo:
An efficient algorithm within the finite deformation framework is developed for finite element implementation of a recently proposed isotropic, Mohr-Coulomb type material model, which captures the elastic-viscoplastic, pressure sensitive and plastically dilatant response of bulk metallic glasses. The constitutive equations are first reformulated and implemented using an implicit numerical integration procedure based on the backward Euler method. The resulting system of nonlinear algebraic equations is solved by the Newton-Raphson procedure. This is achieved by developing the principal space return mapping technique for the present model which involves simultaneous shearing and dilatation on multiple potential slip systems. The complete stress update algorithm is presented and the expressions for viscoplastic consistent tangent moduli are derived. The stress update scheme and the viscoplastic consistent tangent are implemented in the commercial finite element code ABAQUS/Standard. The accuracy and performance of the numerical implementation are verified by considering several benchmark examples, which includes a simulation of multiple shear bands in a 3D prismatic bar under uniaxial compression.
Resumo:
We carry out a direct numerical simulation (DNS) study that reveals the effects of polymers on statistically steady, forced, homogeneous, and isotropic fluid turbulence. We find clear manifestations of dissipation-reduction phenomena: on the addition of polymers to the turbulent fluid, we obtain a reduction in the energy dissipation rate; a significant modification of the fluid-energy spectrum, especially in the deep-dissipation range; and signatures of the suppression of small-scale structures, including a decrease in small-scale vorticity filaments. We also compare our results with recent experiments and earlier DNS studies of decaying fluid turbulence with polymer additives.
Resumo:
We present the results of our detailed pseudospectral direct numerical simulation (DNS) studies, with up to 1024(3) collocation points, of incompressible, magnetohydrodynamic (MHD) turbulence in three dimensions, without a mean magnetic field. Our study concentrates on the dependence of various statistical properties of both decaying and statistically steady MHD turbulence on the magnetic Prandtl number Pr-M over a large range, namely 0.01 <= Pr-M <= 10. We obtain data for a wide variety of statistical measures, such as probability distribution functions (PDFs) of the moduli of the vorticity and current density, the energy dissipation rates, and velocity and magnetic-field increments, energy and other spectra, velocity and magnetic-field structure functions, which we use to characterize intermittency, isosurfaces of quantities, such as the moduli of the vorticity and current density, and joint PDFs, such as those of fluid and magnetic dissipation rates. Our systematic study uncovers interesting results that have not been noted hitherto. In particular, we find a crossover from a larger intermittency in the magnetic field than in the velocity field, at large Pr-M, to a smaller intermittency in the magnetic field than in the velocity field, at low Pr-M. Furthermore, a comparison of our results for decaying MHD turbulence and its forced, statistically steady analogue suggests that we have strong universality in the sense that, for a fixed value of Pr-M, multiscaling exponent ratios agree, at least within our error bars, for both decaying and statistically steady homogeneous, isotropic MHD turbulence.
Resumo:
We review some advances in the theory of homogeneous, isotropic turbulence. Our emphasis is on the new insights that have been gained from recent numerical studies of the three-dimensional Navier Stokes equation and simpler shell models for turbulence. In particular, we examine the status of multiscaling corrections to Kolmogorov scaling, extended self similarity, generalized extended self similarity, and non-Gaussian probability distributions for velocity differences and related quantities. We recount our recent proposal of a wave-vector-space version of generalized extended self similarity and show how it allows us to explore an intriguing and apparently universal crossover from inertial- to dissipation-range asymptotics.
Resumo:
We report the optical spectra and single crystal magnetic susceptibility of the one-dimensional antiferromagnet KFeS2. Measurements have been carried out to ascertain the spin state of Fe3+ and the nature of the magnetic interactions in this compound. The optical spectra and magnetic susceptibility could be consistently interpreted using a S = 1/2 spin ground state for the Fe3+ ion. The features in the optical spectra have been assigned to transitions within the d-electron manifold of the Fe3+ ion, and analysed in the strong field limit of the ligand field theory. The high temperature isotropic magnetic susceptibility is typical of a low-dimensional system and exhibits a broad maximum at similar to 565 K. The susceptibility shows a well defined transition to a three dimensionally ordered antiferromagnetic state at T-N = 250 K. The intra and interchain exchange constants, J and J', have been evaluated from the experimental susceptibilities using the relationship between these quantities, and chi(max), T-max, and T-N for a spin 1/2 one-dimensional chain. The values are J = -440.71 K, and J' = 53.94 K. Using these values of J and J', the susceptibility of a spin 1/2 Heisenberg chain was calculated. A non-interacting spin wave model was used below T-N. The susceptibility in the paramagnetic region was calculated from the theoretical curves for an infinite S = 1/2 chain. The calculated susceptibility compares well with the experimental data of KFeS2. Further support for a one-dimensional spin 1/2 model comes from the fact that the calculated perpendicular susceptibility at 0K (2.75 x 10(-4) emu/mol) evaluated considering the zero point reduction in magnetization from spin wave theory is close to the projected value (2.7 x 10(-4) emu/mol) obtained from the experimental data.
Resumo:
The dynamics of three liquid crystals, 4'(pentyloxy)-4-biphenylcarbonitrile (5-OCB), 4'-pentyl-4-biphenylcarbonitrile (5-CB), and 1-isothiocyanato-(4-propylcyclohexyl)benzene (3-CHBT), are investigated from very short time (similar to1 ps) to very long time (>100 ns) as a function of temperature using optical heterodyne detected optical Kerr effect experiments. For all three liquid crystals, the data decay exponentially only on the longest time scale (> several ns). The temperature dependence of the long time scale exponential decays is described well by the Landau-de Gennes theory of the randomization of pseudonematic domains that exist in the isotropic phase of liquid crystals near the isotropic to nematic phase transition. At short time, all three liquid crystals display power law decays. Over the full range of times, the data for all three liquid crystals are fit with a model function that contains a short time power law. The power law exponents for the three liquid crystals range between 0.63 and 0.76, and the power law exponents are temperature independent over a wide range of temperatures. Integration of the fitting function gives the empirical polarizability-polarizability (orientational) correlation function. A preliminary theoretical treatment of collective motions yields a correlation function that indicates that the data can decay as a power law at short times. The power law component of the decay reflects intradomain dynamics. (C) 2002 American Institute of Physics.
Resumo:
We study small perturbations of three linear Delay Differential Equations (DDEs) close to Hopf bifurcation points. In analytical treatments of such equations, many authors recommend a center manifold reduction as a first step. We demonstrate that the method of multiple scales, on simply discarding the infinitely many exponentially decaying components of the complementary solutions obtained at each stage of the approximation, can bypass the explicit center manifold calculation. Analytical approximations obtained for the DDEs studied closely match numerical solutions.