113 resultados para Isotermas de Langmuir
Resumo:
New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV−vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV−vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic π-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties.
Resumo:
The surface instability of a semi-infinite plasma immersed in a high frequency field is investigated. When the natural Langmuir frequency of the surface is nearly equal to the frequency of the high frequency field, the dispersion relation predicts build-up of oscillations with a growth rate comparable with the real part of the frequency. Threshold values above which the instability is possible are derived.
Resumo:
The integration of hydrophobic and hydrophilic drugs in the polymer microcapsule offers the possibility of developing a new drug delivery system that combines the best features of these two distinct classes of material. Recently, we have reported the encapsulation of an uncharged water-insoluble drug in the polymer membrane. The hydrophobic drug is deposited using a layer-by-layer (LbL) technique, which is based on the sequential adsorption of oppositely charged polyelectrolytes onto a charged substrate. In this paper, we report the encapsulation of two different drugs, which are invariably different in structure and in their solubility in water. We have characterized these dual drug vehicular capsules by confocal laser scanning microscopy, atomic force microscopy, visible microscopy, and transmission electron microscopy. The growth of a thin film on a flat substrate by LbL was monitored by UV−vis spectra. The desorption kinetics of two drugs from the thin film was modeled by a second-order rate model.
Resumo:
The interfacial shear rheological properties of a continuous single-crystalline film of CuS and a 3D particulate gel of CdS nanoparticles (3−5 nm in diameter) formed at toluene−water interfaces have been studied. The ultrathin films (50 nm in thickness) are formed in situ in the shear cell through a reaction at the toluene−water interface between a metal−organic compound in the organic layer and an appropriate reagent for sulfidation in the aqueous layer. Linear viscoelastic spectra of the nanofilms reveal solid-like rheological behavior with the storage modulus higher than the loss modulus over the range of angular frequencies probed. Large strain amplitude sweep measurements on the CdS nanofilms formed at different reactant concentrations suggest that they form a weakly flocculated gel. Under steady shear, the films exhibit a yield stress, followed by a steady shear thinning at high shear rates. The viscoelastic and flow behavior of these films that are in common with those of many 3D “soft” materials like gels, foams, and concentrated colloidal suspensions can be described by the “soft” glassy rheology model.
Resumo:
Kinetic studies of macromolecular ligand-ligate interaction have generated ample interest since the advent of plasmon resonance based instruments like BIAcore. Most of the studies reported in literature assume a simple 1 : 1 Langmuir binding and complete reversibility of the system. However we observed that in a high affinity antigen-antibody system [human chorionic gonadotropin-monoclonal antibody (hCG-mAb)] dissociation is insignificant and the sensogram data cannot be used to measure the equilibrium and kinetic parameters. At low concentrations of mAb the complete sensogram could be fitted to a single exponential. Interestingly we found that at higher mAb concentrations, the binding data did not conform to a simple bimolecular model. Instead, the data fitted a two-step model, which may be because of surface heterogeneity of affinity sites. In this paper, we report on the global fit of the sensograms. We have developed a method by which a single two-minute sensogram can be used in high affinity systems to measure the association rate constant of the reaction and the functional capacity of the ligand (hCG) immobilized on the chip. We provide a rational explanation for the discrepancies generally observed in most of the BIAcore sensograms
Resumo:
A rough hydrophobic surface when immersed in water can result in a ``Cassie'' state of wetting in which the water is in contact with both the solid surface and the entrapped air. The sustainability of the entrapped air on such surfaces is important for underwater applications such as reduction of flow resistance in microchannels and drag reduction of submerged bodies such as hydrofoils. We utilize an optical technique based oil total internal reflection of light at the water-air interface to quantify the spatial distribution of trapped air oil such a surface and its variation with immersion time. With this technique, we evaluate the sustainability of the Cassie state on hydrophobic surfaces with four different kinds of textures. The textures studied are regular arrays of pillars, ridges, and holes that were created in silicon by a wet etching technique, and also a texture of random craters that was obtained through electrodischarge machining of aluminum. These surfaces were rendered hydrophobic with a self-assembled layer Of fluorooctyl trichlorosilane. Depending on the texture, the size and shape of the trapped air pockets were found to vary. However, irrespective of the texture, both the size and the number of air pockets were found to decrease with time gradually and eventually disappear, suggesting that the sustainability of the ``Cassie'' state is finite for all the microstructures Studied. This is possibly due to diffusion of air from the trapped air pockets into the water. The time scale for disappearance of air pockets was found to depend on the kind of microstructure and the hydrostatic pressure at the water-air interface. For the surface with a regular array of pillars, the air pockets were found to be in the form of a thin layer perched on top of the pillars with a large lateral extent compared to the spacing between pillars. For other surfaces studied, the air pockets are smaller and are of the same order as the characteristic length scale of the texture. Measurements for the surface with holes indicate that the time for air-pocket disappearance reduces as the hydrostatic pressure is increased.
Resumo:
Hybrid semiconductor-metal nanoparticles monolayer of Cadmium Sclenide and gold nanoparticles has been prepared, using Langmuir – Blodgett technique. The near field photoluminescence spectra from such monolayer films, shows red shift similar to 75 meV with respect to CdSe QDs monolayer film and splitting similar to 57 meV. The composite spectra are much broader similar to 330 meV compared to the corresponding emission spectra of CdSe monolayer similar to 165 meV. The possible explanation for the observed features are provided in terms of exciton - Plasmon interaction.
Resumo:
Sequence specific interaction between DNA and protein molecules has been a subject of active investigation for decades now. Here, we have chosen single promoter containing bacteriophage Delta D-III T7 DNA and Escherichia coli RNA polymerase and followed their recognition at the air-water interface by using the surface plasmon resonance (SPR) technique, where the movement of one of the reacting species is restricted by way of arraying them on an immobilized support. For the Langmuir monolayer studies, we used a RNA polymerase with a histidine tag attached to one of its subunits, thus making it an xcellent substrate for Ni(II) ions, while the SPR Studies were done using biotin-labeled DNA immobilized on a streptavidin-coated chip. Detailed analysis of the thermodynamic parameters as a function of concentration and temperature revealed that the interaction of RNA polymerase with T7 DNA is largely entropy driven (83 (+/- 12) kcal mol(-1)) with a positive enthalpy of 13.6 (+/- 3.6) kcal mol(-1), The free energy of reaction determined by SPR and Langmuir-Blodgett technique was -11 (+/- 2) and -15.6 kcal mol(-1), respectively. The ability of these methods to retain the specificity of the recognition process was also established.
Resumo:
Three inorganic-organic hybrid framework cadmium thiosulfate phases have been investigated for adsorption and photodegradation of organic dye molecules. Different classes of organic dyes, viz., triaryl methane, azo, xanthene, anthraquinone, have been studied. The anionic dyes with sulfonate groups appear to readily adsorb on the cadmium thiosulfate compounds in an aqueous medium. The adsorption of the dye molecules, however, does not create any structural changes on the cadmium thiosulfate compounds, though weak electronic interactions have been observed. The adsorbed dyes have been desorbed partially in an alcoholic medium, suggesting possible applications in scavenging specific anionic dyes from the aqueous solutions. Langmuir adsorption/desorption isotherms have been used to model this behavior. UV-assisted (lambda(max) = 365 nm) photocatalytic decomposition studies on the cationic dyes indicate reasonable activity comparable with that of Degussa P-25 (TiO2) catalyst. Sunlight assisted photocatalyti studies have been carried out in detail employing hybrid framework compounds. The Langmuir-Hinshelwood kinetics model, employed to follow the degradation profile of the organic dyes, indicates that the photocatalytic degradation follows the order: triaryl methane > azo > xanthene.
Resumo:
Batch adsorption of fluoride onto manganese dioxide-coated activated alumina (MCAA) has been studied. Adsorption experiments were carried out at various pH (3–9), time interval (0–6 h), adsorbent dose (1–16 g/l), initial fluoride concentration (1–25 mg/l) and in the presence of different anions. Adsorption isotherms have been modeled using Freundlich, Langmuir and Dubinin–Raduskevich isotherms and adsorption followed Langmuir isotherm model. Kinetic studies revealed that the adsorption followed second-order rate kinetics. MCAA could remove fluoride effectively (up to 0.2 mg/l) at pH 7 in 3 h with 8 g/l adsorbent dose when 10 mg/l of fluoride was present in 50 ml of water. In the presence of other anions, the adsorption of fluoride was retared. The mechanism of fluoride uptake by MCAA is due to physical adsorption as well as through intraparticle diffusion which was confirmed by kinetics, Dubinin–Raduskevich isotherm, zeta-potential measurements and mapping studies of energy-dispersive analysis of X-ray.
Resumo:
Surfactant anion intercalated hydroxy salts of copper and cobalt of the formula M(OH)(2-x)(surf)(x)center dot mH(2)O [M = Cu, Co; surf = dodecyl sulfate. dodecyl benzene sulfonate. and x = 0.5 for Cu and 0.67 for Co] delaminate readily in 1-butanol to give translucent colloidal dispersions that are stable for months. The extent of delamination and the colloidal dispersion observed in these solids is higher than what had been observed for layered double hydroxides. The dispersions yield the corresponding nanoparticulate oxides on solvothermal decomposition. While the copper hydroxy salt forms similar to 300 nm dendrimer-like CuO nanostructures comprising nanorods of similar to 10 nm diameter, the cobalt analogue forms similar to 20 nm superparamagnetic particles of Co3O4.
Resumo:
End-tethered chains made of an adsorbed diblock copolymer of polystyrene (PS)-polyisoprene (PI) bearing an end-segment including a Ge atom are built by the Langmuir-Schaeffer technique. They are studied both in the dry state and in a good solvent for the PI chain using grazing incidence X-ray standing waves. The analysis of the signal provides a direct measurement of the end-segment distribution which is found to be singular and mostly localized to a plane in the dry case. In the good solvent case, end-segments are found to span the entire assembly and compare very well with results obtained by Kreer et al.
Resumo:
The time evolution of the film thickness and domain formation of octadecylamine molecules adsorbed oil a mica surface is investigated Using atomic force microscopy. The adsorbed Film thickness is determined by measuring the height profile across the mica-amine interface of a mica surface partially immersed in a 15 mM solution of octadecylamine in chloroform. Using this novel procedure, adsorption of amine on mica is found to occur in three distinct stages, with morphologically distinct domain Formation and growth occurring during each stage. In the first stage, where adsorption is primarily in the thin-film regime, all average Film thickness of 0.2 (+/- 0.3) nm is formed for exposure times below 30 s and 0.8 (+/- 0.2) nm for 60 s of immersion time. During this stage, large sample spanning domains are observed. The second stage, which occurs between 60-300 s, is associated with it regime of rapid film growth, and the film thickness increases from about 0.8 to 25 nm during this stage. Once the thick-film regime is established, further exposure to the amine solution results in all increase in the domain area, and it regime of lateral domain growth is observed. In this stage, the domain area coverage grows from 38 to 75%, and the FTIR spectra reveal an increased level of crystallinity in the film. Using it diffusion-controlled model and it two-step Langmuir isotherm, the time evolution of the film growth is quantitatively captured. The model predicts the time at which the thin to thick film transition occurs as well its the time required for complete film growth at longer times. The Ward-Tordai equation is also solved to determine the model parameters in the monolayer (thin-film) regime, which occurs during the initial stages of film growth.
Resumo:
Alum-impregnated activated alumina (AIAA) was investigated in the present work as an adsorbent for the removal of As(V) from water by batch mode. Adsorption study at different pH values shows that the efficiency of AIAA is much higher than as such activated alumina and is suitable for treatment of drinking water. The adsorption isotherm experiments indicated that the uptake of As(V) increased with increasing As(V) concentration from 1 to 25 mg/l and followed Langmuir-type adsorption isotherm. Speciation diagram shows that in the pH range of 2.8–11.5, arsenate predominantly exists as H2AsO4− and HAsO42− species and hence it is presumed that these are the major species being adsorbed on the surface of AIAA. Intraparticle diffusion and kinetic studies revealed that adsorption of As(V) was due to physical adsorption as well as through intraparticle diffusion. Effect of interfering ions revealed that As(V) sorption is strongly influenced by the presence of phosphate ion. The presence of arsenic on AIAA is depicted from zeta potential measurement, scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX) mapping study. Alum-impregnated activated alumina successfully removed As(V) to below 40 ppb (within the permissible limit set by WHO) from water, when the initial concentration of As(V) is 10 mg/l.
Resumo:
Membrane formation from gemini pseudoglyceryl lipids bearing n-C14H29 and n-C16H33 chains has been reported. These lipid aggregates have been characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), high sensitivity differential scanning calorimetry (DSC), and Paldan fluorescence studies. The length of the spacer between the cationic ammonium headgroups has been varied from -(CH2)(3)- (propandiyl) to -(CH2)(12)- (dodecandiyl) in these lipids. All gemini lipids were found to generate stable suspensions in aqueous media. Electron microscopic studies revealed the smaller size of the gemini lipid aggregates as compared to their monomeric lipid counterparts. DLS measurements showed that the gemini lipid suspensions with a -(CH2)(8)- spacer length were bigger in size than that of other analogues. DSC studies suggest the unusual behavior of the gemini lipids bearing -(CH2)3- propanediyl spacer based lipids. These observations were consistent irrespective of the hydrocarbon chain lengths of the lipids. Paldan fluorescence based hydration studies showed that the hexadecyl chain based gemini lipid aggregates bearing a -(CH2)(12)- spacer were the most hydrated in their gel states among all the gemini lipid series investigated herein.