74 resultados para Intracellular transport by molecular motors
Resumo:
Intramolecular S center dot center dot center dot O chalcogen bonding and its potential to lock molecular conformation have been examined in the crystal forms of sulfamethizole, a sulfonamide antibiotic. Molecular complexes of sulfamethizole, including salts and cocrystal, have been synthesized, and their crystal structures were analyzed in order to examine the possible conformational preferences of the molecule in various ionic states and supramolecular environments (neutral/cocrystal, anionic salt, and cationic salt forms). The electrostatic potential mapped on Hirshfeld surfaces generated for these crystal forms provides insights into the possible binding modes of the drug in different environments. Further, the observed conformation locking feature has been rationalized in terms of the experimental charge density features of the intramolecular S center dot center dot O chalcogen bonding in sulfamethizole. The study quantitatively illustrates and rationalizes an intriguing case of a local minimum of molecular conformation being exclusively preferred over the global minimum, as it facilitates more efficient intermolecular interactions in a supramolecular environment.
Resumo:
Ion transport across phospholipid vesicles was studied by 7Li and 23Na-NMR using an aqueous anionic paramagnetic shift reagent, dysprosium nitrilotriacetate [Dy(NTA)2]3?, mediated by ionophores, lasalocid A and A23187. The intra- and extracellular 7Li and 23Na-NMR signals were well separated (20?Hz) at mM concentration of the shift reagent. The observed data on the rate constant for lithium transport across DPPC vesicles at various concentrations of the ionophores indicated that lasalocid A is a more efficient carrier for lithium ion compared with the sodium ion transport by this ionophore, while A23187 was not specific to either of the ions (Li or Na). ©1998 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
The structure and dynamics of silver ion conducting AgI-Ag2MoO4 glasses have been simulated by molecular dynamics simulation over a wide range of compositions. Formation of silver iodide like aggregates have been identified only in the AgI rich glasses. Increase in silver ion conductivity with an increase in AgI content in the glass is seen as in experiments. The dynamics of ion transport suggests that Ag+ ion transport occurs largely through paths connected by silver ion sites of mixed iodide-oxide coordination. The Van Hove correlation functions indicate that Ag+ ions prefer migration along the pathways formed with connected sites of similar coordination.
Resumo:
Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the D-Ala-D-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetyl-glucosamine and N-acetyl-muramic acid-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. beta-Lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a beta-lactamase and is not trapped as an acyl intermediate with beta-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.
Resumo:
Active particles contain internal degrees of freedom with the ability to take in and dissipate energy and, in the process, execute systematic movement. Examples include all living organisms and their motile constituents such as molecular motors. This article reviews recent progress in applying the principles of nonequilibrium statistical mechanics and hydrodynamics to form a systematic theory of the behavior of collections of active particles-active matter-with only minimal regard to microscopic details. A unified view of the many kinds of active matter is presented, encompassing not only living systems but inanimate analogs. Theory and experiment are discussed side by side.
Resumo:
High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN film grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ultra thin films of pure silicon nitride were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma with a high content of nitrogen atoms. The effect of annealing of silicon nitride surface was investigated with core-level photoelectron spectroscopy. The Si 2p photoelectron spectra reveals a characteristic series of components for the Si species, not only in stoichiometric Si3N4 (Si4+) but also in the intermediate nitridation states with one (Si1+) or three (Si3+) nitrogen nearest neighbors. The Si 2p core-level shifts for the Si1+, Si3+, and Si4+ components are determined to be 0.64, 2.20, and 3.05 eV, respectively. In annealed sample it has been observed that the Si4+ component in the Si 2p spectra is significantly improved, which clearly indicates the crystalline nature of silicon nitride. The high resolution X-ray diffraction (HRXRD), scanning electron microscopy (SEM) and photoluminescence (PL) studies showed a significant improvement of the crystalline qualities and enhancement of the optical properties of GaN grown on the stoichiometric Si3N4 by molecular beam epitaxy (MBE). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A systematic investigation of monatomic spherical sorbates in the supercages of zeolites Y and A by molecular dynamics technique is presented. Rates of intercage diffusion, rates of cage visits, and the diffusion coefficients have been calculated as a function of the sorbate-zeolite interaction strength. These properties exhibit markedly different dependences on interaction strength for the two zeolites. The observed behavior is shown to be a consequence of the two principal mechanisms of intercage diffusion and the energetic barrier associated with them. The diffusion coefficient and other properties associated with intercage diffusion are found to be directly proportional to the reciprocal of the square of the sorbate diameter when the sorbate diameter is significantly smaller than the window diameter. As the sorbate diameter increases, a peak is observed in all the transport properties investigated including the diffusion coefficient. We call this surprising effect as the ring or levitation effect and it explains several anomalous results reported in the literature and suggests a breakdown of the geometrical criterion for diffusion of sorbates. It shows that under certain conditions nongeometrical factors play a major role and geometrical factors become secondary in the determination of the molecular sieve property. A generalized parameter has been proposed which suggests conditions under which one can expect the ring or levitation effect in any porous medium. Inverse size selectivity becomes operative under these conditions.
Resumo:
Proline residues in helices play an important role in the structure of proteins. The proline residue introduces a kink in the helix which varies from about 5-degrees to 50-degrees. The presence of other residues such as threonine or valine near the proline region can influence the flexibility exhibited by the kinked helix, which can have an important biological role. In the present paper, the constraint introduced by threonine and valine on a proline helix is investigated by molecular dynamics studies. The systems considered am (1) a poly-alanine helix with threonine-proline residues (TP) and (2) a poly-alanine helix with valine-threonine-proline residues (VTP), in the middle. Molecular dynamics simulations are carried out on these two systems for 500 ps. The results are analyzed in terms of structural transitions, bend-related parameters and sidechain orientations.
Resumo:
Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab Ea-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS-albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small nonnuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex. (C) 1994 Academic Press, Inc.
Resumo:
Bacteriorhodopsin (bR) continues to be a proven testing ground for the study of integral membrane proteins (IMPs). It is important to study the stability of the individual helices of bR, as they are postulated to exist as independently stable transmembmne helices (TMHs) and also for their utility as templates for modeling other IMPs with the postulated seven-helix bundle topology. Toward this purpose, the seven helices of bR have been studied by molecular dynamics simulation in this study. The suitability of using the backbone-dependent rotamer library of side-chain conformations arrived at from the data base of globular protein structures in the case TMHs has been tested by another set of ? helix simulations with the side-chain orientations taken from this library. The influence of the residue's net charge oil the helix stability was examined by simulating the helices III, IV, and VI (from both of the above sets of helices) with zero net charge on the side chains. The results of these 20 simulations demonstrate in general the stability of the isolated helices of bR in conformity with the two-stage hypothesis of IMP folding. However, the helices I, II, V, and VII are more stable than the other three helices. The helical nature of certain regions of III, IV, and VI are influenced by factors such as the net charge and orientation of several residues. It is seen that the residues Arg, Lys, Asp, and Glu (charged residues), and Ser, Thr, Gly, and Pro, play a crucial role in the stability of the helices of bR. The backbone-dependent rotamer library for the side chains is found to be suitable for the study of TMHs in IMP. (C) 1996 John Wiley & Sons, Inc.
Resumo:
GMP synthetase, a class I amidotransferase, catalyzes the last step of the purine biosynthetic pathway, where ammonia from glutamine is incorporated into xanthosine 5'-monophospate to yield guanosine 5'-monnophosphate as the main product. Combined biochemical, structural, and computational studies of glutamine amidotransferases have revealed the existence of physically separate active sites connected by molecular tunnels that efficiently transfer ammonia from the glutaminase site to the synthetase site. Here, we have investigated aspects of ammonia channeling in P. falciparum GMP synthetase using biochemical assays in conjunction with N-15-edited proton NMR spectroscopy. Our results suggest that (1) ammonia released from glutamine is not equilibrated with the external medium (2) saturating concentrations of glutamine do not obliterate the incorporation of external ammonia into GMP, and (3) ammonia in the external medium can access the thioester intermediate when the ATPPase domain is bound to substrates. Further, mutation of Cys-102 to alanine confirmed its identity as the catalytic residue in the glutaminase domain, and ammonia-dependent assays on the mutant indicated glutamine to be a partial uncompetitive inhibitor of the enzyme.
Resumo:
The DNA-binding properties of the EcoP15I DNA methyltransferase (M . EcoP15I; MTase) were studied using electrophoretic mobility shift assays. We show by molecular size-exclusion chromatography and dimethyl suberimidate crosslinking that M . EcoP15I is a dimer in solution. While M . EcoP15I binds approx. threefold more tightly to its recognition sequence, 5'-CAGCAG-3', than to non-specific sequences in the presence of AdoMet or its analogs, the discrimination between specific and non-specific sequences significantly increases in presence of ATP. These results suggest for the first time a role for ATP in DNA recognition by type-III restriction-modification enzymes. Furthermore, we show that although c2 EcoPI mutant MTases are defective in AdoMet binding, they are still able to bind DNA in a sequence-specific manner.
Resumo:
Epoxidation of alkenes by molecular oxygen is effected in high yields by catalysis of RuCl2(biox)(2) using isobutyraldehyde as the co-reductant: the reaction is stereospecific and regioselective.
Resumo:
Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and hems, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photoexcitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, chemistry at a distance. Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago. we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.