49 resultados para Initial value problems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A large class of scattering problems of surface water waves by vertical barriers lead to mixed boundary value problems for Laplace equation. Specific attentions are paid, in the present article, to highlight an analytical method to handle this class of problems of surface water wave scattering, when the barriers in question are non-reflecting in nature. A new set of boundary conditions is proposed for such non-reflecting barriers and tile resulting boundary value problems are handled in the linearized theory of water waves. Three basic poblems of scattering by vertical barriers are solved. The present new theory of non-reflecting vertical barriers predict new transmission coefficients and tile solutions of tile mathematical problems turn out to be extremely simple and straight forward as compared to the solution for other types of barriers handled previously.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The short-lived radionuclide Ca-41 plays an important role in constraining the immediate astrophysical environment and the formation timescale of the nascent solar system due to its extremely short half-life (0.1 Myr). Nearly 20 years ago, the initial ratio of Ca-41/Ca-40 in the solar system was determined to be (1.41 +/- 0.14) x 10(-8), primarily based on two Ca-Al-rich Inclusions (CAIs) from the CV chondrite Efremovka. With an advanced analytical technique for isotopic measurements, we reanalyzed the potassium isotopic compositions of the two Efremovka CAIs and inferred the initial ratios of Ca-41/Ca-40 to be (2.6 +/- 0.9) x 10(-9) and (1.4 +/- 0.6) x 10(-9) (2 sigma), a factor of 7-10 lower than the previously inferred value. Considering possible thermal processing that led to lower Al-26/Al-27 ratios in the two CAIs, we propose that the true solar system initial value of Ca-41/Ca-40 should have been similar to 4.2 x 10(-9). Synchronicity could have existed between Al-26 and Ca-41, indicating a uniform distribution of the two radionuclides at the time of CAI formation. The new initial Ca-41 abundance is 4-16 times lower than the calculated value for steady-state galactic nucleosynthesis. Therefore, Ca-41 could have originated as part of molecular cloud materials with a free decay time of 0.2-0.4 Myr. Alternative possibilities, such as a last-minute input from a stellar source and early solar system irradiation, could not be definitively ruled out. This underscores the need for more data from diverse CAIs to determine the true astrophysical origin of Ca-41.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article, we obtain explicit solutions of a system of forced Burgers equation subject to some classes of bounded and compactly supported initial data and also subject to certain unbounded initial data. In a series of papers, Rao and Yadav (2010) 1-3] obtained explicit solutions of a nonhomogeneous Burgers equation in one dimension subject to certain classes of bounded and unbounded initial data. Earlier Kloosterziel (1990) 4] represented the solution of an initial value problem for the heat equation, with initial data in L-2 (R-n, e(vertical bar x vertical bar 2/2)), as a series of self-similar solutions of the heat equation in R-n. Here we express the solutions of certain classes of Cauchy problems for a system of forced Burgers equation in terms of self-similar solutions of some linear partial differential equations. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method is presented for obtaining useful closed form solution of a system of generalized Abel integral equations by using the ideas of fractional integral operators and their applications. This system appears in solving certain mixed boundary value problems arising in the classical theory of elasticity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let A be a positive definite operator in a Hilbert space and consider the initial value problem for u(t) = -A(2)u. Using a representation of the semigroup exp(-A(2)t) in terms of the group exp(iAt) we express u in terms of the solution of the standard heat equation w(t) = W-yy, with initial values v solving the initial value problem for v(y) = iAv. This representation is used to construct a method for approximating u in terms of approximations of v. In the case that A is a 2(nd) order elliptic operator the method is combined with finite elements in the spatial variable and then reduces the solution of the 4(th) order equation for u to that of the 2(nd) order equation for v, followed by the solution of the heat equation in one space variable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of tangential friction at pin—hole interfaces are appropriately modelled for the analysis of fasteners in large composite (orthotropic) plate loaded along its edges. The pin—hole contact could be of interference, clearance or neat fit. When the plate load is monotonically increased, interference fits give rise to receding contact, whereas clearance fits result in advancing contact. In either case, the changing contact situations lead to non-linear moving boundary value problems. The neat fit comes out as a special case in which the contact and separation regions are invariant with the applied load level and so the problem remains linear. The description of boundary conditions in the presence of tangential friction, will depend on whether the problem is one of advancing or receding contact, advancing contact presenting a special problem. A model is developed for the limiting case of a rigid pin and an ideally rough interface (infinitely large friction coefficient). The non-linearity resulting from the continuously varying proportions of contact and separation at the interface, is handled by an “Inverse Formulation” which was successfully applied earlier by the authors for smooth (zero friction) interfacial conditions. The additional difficulty introduced by advancing contact is handled by adopting a “Marching Solution”. The modelling and the procedure are illustrated in respect of symmetric plate load cases. Numerical results are presented bringing out the effects of interfacial friction and plate orthotropy on load-contact relations and plate stresses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A continuum method of analysis is presented in this paper for the problem of a smooth rigid pin in a finite composite plate subjected to uniaxial loading. The pin could be of interference, push or clearance fit. The plate is idealized to an orthotropic sheet. As the load on the plate is progressively increased, the contact along the pin-hole interface is partial above certain load levels in all three types of fit. In misfit pins (interference or clearance), such situations result in mixed boundary value problems with moving boundaries and in all of them the arc of contact and the stress and displacement fields vary nonlinearly with the applied load. In infinite domains similar problems were analysed earlier by ‘inverse formulation’ and, now, the same approach is selected for finite plates. Finite outer domains introduce analytical complexities in the satisfaction of boundary conditions. These problems are circumvented by adopting a method in which the successive integrals of boundary error functions are equated to zero. Numerical results are presented which bring out the effects of the rectangular geometry and the orthotropic property of the plate. The present solutions are the first step towards the development of special finite elements for fastener joints.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper discusses the consistent regularization property of the generalized α method when applied as an integrator to an initial value high index and singular differential-algebraic equation model of a multibody system. The regularization comes from within the discretization itself and the discretization remains consistent over the range of values the regularization parameter may take. The regularization involves increase of the smallest singular values of the ill-conditioned Jacobian of the discretization and is different from Baumgarte and similar techniques which tend to be inconsistent for poor choice of regularization parameter. This regularization also helps where pre-conditioning the Jacobian by scaling is of limited effect, for example, when the scleronomic constraints contain multiple closed loops or singular configuration or when high index path constraints are present. The feed-forward control in Kane's equation models is additionally considered in the numerical examples to illustrate the effect of regularization. The discretization presented in this work is adopted to the first order DAE system (unlike the original method which is intended for second order systems) for its A-stability and same order of accuracy for positions and velocities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A generalization of the isotropic theory of Batchelor & Proudman (1954) is developed to estimate the effect of sudden but arbitrary three-dimensional distortion on homogeneous, initially axisymmetric turbulence. The energy changes due to distortion are expressed in terms of the Fourier coefficients of an expansion in zonal harmonics of the two independent scalar functions that describe the axisymmetric spectral tensor. However, for two special but non-trivial forms of this tensor, which represent possibly the simplest kinds of non-isotropic turbulence and specify the angular distribution but not the wavenumber dependence, the energy ratios have been determined in closed form. The deviation of the ratio from its isotropic value is the product of a factor containing R, the initial value of the ratio of the longitudinal to the transverse energy component, and another factor depending only on the geometry of the distortion. It is found that, in axisymmetric and large two-dimensional contractions, the isotropic theory gives nearly the correct longitudinal energy, but (when R > 1) over-estimates the increase in the transverse energy; the product of the two intensities varies little unless the distortion is very large, thus accounting for the stress-freezing observed in rapidly accelerated shear flows.Comparisons with available experimental data for the spectra and for the energy ratios show reasonable agreement. The different ansatzes predict results in broad qualitative agreement with a simple strategem suggested by Reynolds & Tucker (1975), but the quantitative differences are not always negligible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the impact of dissipationless minor galaxy mergers on the angular momentum of the remnant. Our simulations cover a range of initial orbital characteristics, and the system consists of a massive galaxy with a bulge and disk merging with a much less massive (one-tenth or one-twentieth) gasless companion that has a variety of morphologies (disk-or elliptical-like) and central baryonic mass concentrations. During the process of merging, the orbital angular momentum is redistributed into the internal angular momentum of the final system; the internal angular momentum of the primary galaxy can increase or decrease depending on the relative orientation of the orbital spin vectors (direct or retrograde), while the initially nonrotating dark matter halo always gains angular momentum. The specific angular momentum of the stellar component always decreases independently of the orbital parameters or morphology of the satellite, the decrease in the rotation velocity of the primary galaxy is accompanied by a change in the anisotropy of the orbits, and the ratio of rotation speed to velocity dispersion of the merger remnant is lower than the initial value, not only because of an increase in the dispersion but also of the slowing-down of the disk rotation. We briefly discuss several astrophysical implications of these results, suggesting that minor mergers do not cause a "random walk" process of the angular momentum of the stellar disk component of galaxies, but rather a steady decrease. Minor mergers may play a role in producing the large scatter observed in the Tully-Fisher relation for S0 galaxies, as well as in the increase of the velocity dispersion and the decrease in upsilon/sigma at large radii as observed in S0 galaxies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The probability distribution of the eigenvalues of a second-order stochastic boundary value problem is considered. The solution is characterized in terms of the zeros of an associated initial value problem. It is further shown that the probability distribution is related to the solution of a first-order nonlinear stochastic differential equation. Solutions of this equation based on the theory of Markov processes and also on the closure approximation are presented. A string with stochastic mass distribution is considered as an example for numerical work. The theoretical probability distribution functions are compared with digital simulation results. The comparison is found to be reasonably good.