64 resultados para Infinite dimensional strategy spaces
Resumo:
Analytical solution of a 2-dimensional problem of solidification of a superheated liquid in a semi-infinite mould has been studied in this paper. On the boundary, the prescribed temperature is such that the solidification starts simultaneously at all points of the boundary. Results are also given for the 2-dimensional ablation problem. The solution of the heat conduction equation has been obtained in terms of multiple Laplace integrals involving suitable unknown fictitious initial temperatures. These fictitious initial temperatures have interesting physical interpretations. By choosing suitable series expansions for fictitious initial temperatures and moving interface boundary, the unknown quantities can be determined. Solidification thickness has been calculated for short time and effect of parameters on the solidification thickness has been shown with the help of graphs.
Resumo:
In this paper, we show existence and uniqueness of a solution to a functional differential equation with infinite delay. We choose an appropriate Frechet space so as to cover a large class of functions to be used as initial functions to obtain existence and uniqueness of solutions.
Resumo:
In this paper, we show existence and uniqueness of a solution to a functional differential equation with infinite delay. We choose an appropriate Frechet space so as to cover a large class of functions to be used as initial functions to obtain existence and uniqueness of solutions.
Resumo:
Kinetics of random sequential, irreversible multilayer deposition of macromolecules of two different sizes on a one dimensional infinite lattice is analyzed at the mean field level. A formal solution for the corresponding rate equation is obtained. The Jamming limits and the distribution of gaps of exact sizes are discussed. In the absence of screening, the jamming limits are shown to be the same for all the layers. A detailed analysis for the components differing by one monomer unit is presented. The small and large time behaviors and the dependence of the individual jamming limits of the k mers and (k−1) mers on k and the rate parameters are analyzed.
Resumo:
A 6 X 6 transfer matrix is presented to evaluate the response of a multi-layer infinite plate to a given two-dimensional pressure excitation on one of its faces or, alternatively, to evaluate the acoustic pressure distribution excited by the normal velocity components of the radiating surfaces. It is shown that the present transfer matrix is a general case embodying the transfer matrices of normal excitation and one-dimensional pressure excitation due to an oblique incident wave. It is also shown that the present transfer matrix obeys the necessary checks to categorize the physically symmetric multi-layer plate as dynamically symmetric. Expressions are derived to obtain the wave propagation parameters, such as the transmission, absorption and reflection coefficients, in terms of the elements of the transfer matrix presented. Numerical results for transmission loss and reflection coefficients of a two-layer configuration are presented to illustrate the effect of angles of incidence, layer characteristics and ambient media.
Resumo:
This paper presents an approximate three-dimensional elasticity solution for an infinitely long, cross-ply laminated circular cylindrical shell panel with simply supported boundary conditions, subjected to an arbitrary discontinuous transverse loading. The solution is based on the principal assumption that the ratio of the thickness of the lamina to its middle surface radius is negligible compared to unity. The validity of this assumption and the range of application of this approximate solution have been established through a comparison with an exact solution. Results of classical and first-order shear deformation shell theories have been compared with the results of the present solution to bring out the accuracy of these theories. It is also shown that for very shallow shell panels the definition of a thin shell should be based on the ratio of thickness to chord width rather than the ratio of thickness to mean radius.
Resumo:
A new two-dimensional 3d-4f mixed-metal mixed dicarboxylate (homocyclic and heterocyclic) of the formula [Gd2(H2O)2Ni(H2O)2(1,2-bdc)2(2,5-pydc)2] 3 8H2O (1; 1,2-H2bdc = 1,2-benzenedicarboxylic acid and 2,5-H2pydc = 2,5- pyridinedicarboxylic acid) has been prepared by employing the hydrothermal method. The structure has infinite onedimensional-Gd-O-Gd- chains formed by the edge-shared GdO9 polyhedral units, resulting exclusively from the connectivity between the Gd3+ ions and the 1,2-bdc units. The chains are connected by the [Ni(H2O)2(2,5-pydc)2]2- metalloligand, forming the two-dimensional layer arrangements. The stacking of the layers creates hydrophilic and hydrophobic spaces in the interlamellar region. A one-dimensional water ladder structure, formed by the extraframework water molecules, occupies the hydrophilic region while the benzene ring of 1,2-bdc occupies the hydrophobic region. To the best of our knowledge, the present compound represents the first example of a 3d-4f mixed-metal carboxylate in which two different aromatic dicarboxylate anions act as the linkers. The stabilization energies of the water clusters have been evaluated using density functional theory calculations. The water molecules in 1 are fully reversible accompanied by a change in color (greenish blue to brown) and coordination around Ni2+ ions (octahedral to distorted tetrahedral).
Resumo:
Short-time analytical solutions of temperature and moving boundary in two-dimensional two-phase freezing due to a cold spot are presented in this paper. The melt occupies a semi-infinite region. Although the method of solution is valid for various other types of boundary conditions, the results in this paper are given only for the prescribed flux boundary conditions which could be space and time dependent. The freezing front propagations along the interior of the melt region exhibit well known behaviours but the propagations along the surface are of new type. The freezing front always depends on material parameters. Several interesting results can be obtained as particular cases of the general results.
Resumo:
A three dimensional elasticity solution for the analysis of beams continuous over an infinite number of equally spaced supports has been given. The beam has been subjected to normal tractions on its two opposite faces and these loads are identical over each span. The other two faces are traction free. Numerical results have been given for different cases when the beam is loaded on its bottom face. The results obtained have been compared with the results of two dimensional elasticity solution.
Resumo:
The unsteady laminar free convection boundary layer flows around two-dimensional and axisymmetric bodies placed in an ambient fluid of infinite extent have been studied when the flow is driven by thermal buoyancy forces and buoyancy forces from species diffusion. The unsteadiness in the flow field is caused by both temperature and concentration at the wall which vary arbitrarily with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. Computations have been performed for a circular cylinder and a sphere. The skin friction, heat transfer and mass transfer are strongly dependent on the variation of the wall temperature and concentration with time. Also the skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist and oppose, respectively, the thermal buoyancy force, whereas the mass transfer rate is higher for small values of the ratio of the buoyancy parameters than for large values. The local heat and mass transfer rates are maximum at the stagnation point and they decrease progressively with increase of the angular position from the stagnation point.
Resumo:
We study a model of fermions hopping on a chain with a weak incommensuration close to dimerization; both q, the deviation of the wave number from pi, and delta, the strength of the incommensuration, are assumed to be small. For free fermions, we show that there are an infinite number of energy bands which meet at zero energy as q approaches zero. The number of states lying inside the q = 0 gap remains nonzero as q/delta --> 0. Thus the limit q --> 0 differs from q = 0, as can be seen clearly in the low-temperature specific heat. For interacting fermions or the XXZ spin-(1/2) chain, we use bosonization to argue that similar results hold. Finally, our results can be applied to the Azbel-Hofstadter problem of particles hopping on a two-dimensional lattice in the presence of a magnetic field.
Resumo:
We study charge pumping when a combination of static potentials and potentials oscillating with a time period T is applied in a one-dimensional system of noninteracting electrons. We consider both an infinite system using the Dirac equation in the continuum approximation and a periodic ring with a finite number of sites using the tight-binding model. The infinite system is taken to be coupled to reservoirs on the two sides which are at the same chemical potential and temperature. We consider a model in which oscillating potentials help the electrons to access a transmission resonance produced by the static potentials and show that nonadiabatic pumping violates the simple sin phi rule which is obeyed by adiabatic two-site pumping. For the ring, we do not introduce any reservoirs, and we present a method for calculating the current averaged over an infinite time using the time evolution operator U(T) assuming a purely Hamiltonian evolution. We analytically show that the averaged current is zero if the Hamiltonian is real and time-reversal invariant. Numerical studies indicate another interesting result, namely, that the integrated current is zero for any time dependence of the potential if it is applied to only one site. Finally we study the effects of pumping at two sites on a ring at resonant and nonresonant frequencies, and show that the pumped current has different dependences on the pumping amplitude in the two cases.
Resumo:
We report the optical spectra and single crystal magnetic susceptibility of the one-dimensional antiferromagnet KFeS2. Measurements have been carried out to ascertain the spin state of Fe3+ and the nature of the magnetic interactions in this compound. The optical spectra and magnetic susceptibility could be consistently interpreted using a S = 1/2 spin ground state for the Fe3+ ion. The features in the optical spectra have been assigned to transitions within the d-electron manifold of the Fe3+ ion, and analysed in the strong field limit of the ligand field theory. The high temperature isotropic magnetic susceptibility is typical of a low-dimensional system and exhibits a broad maximum at similar to 565 K. The susceptibility shows a well defined transition to a three dimensionally ordered antiferromagnetic state at T-N = 250 K. The intra and interchain exchange constants, J and J', have been evaluated from the experimental susceptibilities using the relationship between these quantities, and chi(max), T-max, and T-N for a spin 1/2 one-dimensional chain. The values are J = -440.71 K, and J' = 53.94 K. Using these values of J and J', the susceptibility of a spin 1/2 Heisenberg chain was calculated. A non-interacting spin wave model was used below T-N. The susceptibility in the paramagnetic region was calculated from the theoretical curves for an infinite S = 1/2 chain. The calculated susceptibility compares well with the experimental data of KFeS2. Further support for a one-dimensional spin 1/2 model comes from the fact that the calculated perpendicular susceptibility at 0K (2.75 x 10(-4) emu/mol) evaluated considering the zero point reduction in magnetization from spin wave theory is close to the projected value (2.7 x 10(-4) emu/mol) obtained from the experimental data.
Resumo:
Probably the most informative description of the ground slate of a magnetic molecular species is provided by the spin density map. Such a map may be experimentally obtained from polarized neutron diffraction (PND) data or theoretically calculated using quantum chemical approaches. Density functional theory (DFT) methods have been proved to be well-adapted for this. Spin distributions in one-dimensional compounds may also be computed using the density matrix renormalization group (DMRG) formalism. These three approaches, PND, DFT, and DMRG, have been utilized to obtain new insights on the ground state of two antiferromagnetically coupled Mn2+Cu2+ compounds, namely [Mn(Me-6-[14]ane-N-4)Cu(oxpn)](CF3SO3)(2) and MnCu(pba)(H2O)(3) . 2H(2)O, with Me-6-[14]ane-N-4 = (+/-)-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, oxpn = N,N'-bis(3-aminopropyl)oxamido and pba = 1,3-propylenebis(oxamato). Three problems in particular have been investigated: the spin distribution in the mononuclear precursors [Cu(oxpn)] and [Cu(pba)](2-), the spin density maps in the two Mn2+Cu2+ compounds, and the evolution of the spin distributions on the Mn2+ and Cu2+ sites when passing from a pair to a one-dimensional ferrimagnet.