152 resultados para Industry transition
Resumo:
The catalytic effects of Fe2O3, Ni2O3, MnO2, and Co2O3 transition metal oxides (TMO) on the combustion of polystyrene and carboxyl-terminated polybutadiene were investigated. The order of activity of TMO's was explained by the presence of Co and absence of Fe and Ni in their lattice systems along with a reduced electron-transfer process; in systems which induce the metal ions to enter the lattice, the electron transfer process is much greater. The thermal decomposition of ammonium perchlorate propellants was enhanced to a greater extent by Co2O3 and MnO2 than by Fe2O3 and Ni2O3.
Resumo:
The sodium salt of poly(dG-dC) is known to exhibit a B + Z transition in the presence of various cations and 60% alcohol. We here show that the lithium salt of poly(dG-dC) does not undergo B 4 Z transition in the presence of 60% alcohol since Li’ with its large hydration shell cannot stabilize the Z-form. On the other hand, high concentrations of Mg2* or micromolar concentrations of the cobalt hexamine complex which are known to stabilize the Z-form can compete with Li+ for charge neutraIization and hence bring about a B--t Z transition in the same polymer. From the model building studies the mode of action of the cobalt-hexamine complex in stabilizing the Z-form is postulated.
Resumo:
A cluster model of the glass transition has been developed, treating the relative size of the cluster as an order parameter. The model accounts for some of the features of the glass transition.
Resumo:
We have carried out temperature- and pressure-dependent Raman and x-ray measurements on single crystals of Tb2Ti2O7. We attribute the observed anomalous temperature dependence of phonons to phonon-phonon anharmonic interactions. The quasiharmonic and anharmonic contributions to the temperature-dependent changes in phonon frequencies are estimated quantitatively using mode Grüneisen parameters derived from pressure-dependent Raman experiments and bulk modulus from high-pressure x-ray measurements. Further, our Raman and x-ray data suggest a subtle structural deformation of the pyrochlore lattice at ~9 GPa. We discuss possible implications of our results on the spin-liquid behavior of Tb2Ti2O7.
Resumo:
E.S.R. investigations of γ-irradiated ferroelectric Sodium ammonium selenate, NaNH4SeO4•2H2O and its deuteriated analogue in powder and single crystal forms have led to a deeper understanding of the nature of the ferroelectric transition of 180 K. A number of paramagnetic species formed due to γ-irradiation have been identified on the basis of their g-factors and hyperfine features from 77Se. The radical SeO4 has been used as a microprobe in studying the phase transition.
Resumo:
1H NMR spin-lattice relaxation time (T1) studies have been carried out in the temperature range 100 K to 4 K, at two Larmor frequencies 11.4 and 23.3 MHz, in the mixed system of betaine phosphate and glycine phosphite (BPxGPI(1-x)), to study the effects of disorder on the proton group dynamics. Analysis of T1 data indicates the presence of a number of inequivalent methyl groups and a gradual transition from classical reorientations to quantum tunneling rotations. At lower temperatures, microstructural disorder in the local environments of the methyl groups, result in a distribution in the activation energy (Ea) and the torsional energy gap (E01). For certain values of x, the magnetisation recovery shows biexponential behaviour at lower temperatures.
Resumo:
There are several areas in the plywood industry where Operations Research techniques have greatly assisted in better decision-making. These have resulted in improved profits, reduction of wood losses and better utilization of resources. Realizing these, some of the plywood manufacturing firms in the developed countries have established separate Operations Research departments or divisions. In the face of limited raw-material resources, raising costs and a competitive environment, the benefits attributable to the use of these techniques are becoming more and more significant.
Resumo:
An investigation of the phase transitions at high pressures in the alums mentioned in the title has been carried out using EPR of the Cr3+ ion (at the trivalent metal ion site). It is observed that at ambient as well as at high pressures there is a change of slope in the linear variations of the zero field splitting with temperature and that the low temperature phase is characterised by a large number of lines in the EPR spectra. The transition temperature shows a large positive shift with pressure, for both the alums. All these facts are explained in terms of our model of the origin of the trigonal field at the trivalent metal ion site as well as the details of the motion of NH4+ ion.
Resumo:
Photoemission spectra of YBa2Cu3O7-δ in the normal and superconducting states provide direct evidence for dimerization of oxygen below Tc. Cu2+ is found to reduce to Cu1+ concomitantly. These changes may be of vital importance to the mechanism of high-temperature superconductivity.
Resumo:
XPS studies of the interaction of carbon monoxide with surfaces of Fe, Co and Ni indicate that at 300 K, the disproportionation reaction is prominent up to exposures of 103 L giving rise to high surface concentrations of carbon. At higher exposures and higher temperatures, dissociation of carbon monoxide accompanied by the formation of surface oxide layers becomes more prominent. In the case of copper, disproportionation is prominent up to 104 L even at 500 K followed by dissociation at higher exposures. These results are also supported by Auger spectroscopic studies.
Resumo:
The effect of radiation on the Peierls transition in a one-dimensional metal is investigated. It is pointed out that an external radiation field satisfying appropriate frequency conditions reduces the width of the Peierls gap.
Resumo:
No abstract.
Resumo:
X-ra!. K-absorption spectra of niobium in niobium dichalcogenides. namely NbS, and NbSe, and their first-row transition-metal intercalates Mi P 3N bSz (M = Cr. Mn. Fe. Co. Ni) and Ml#,NbSe2 (M = Fe. CO). have been measured together with those in niobium metal. The spectra of these materials are \er? similar to one another. They reflect the transitions to the partially filled niobium d band with some p character. A bariety of x-ray absorption nearedge structures (XASES) associated with the K edges of intercalated atoms are also presented and discussed.
Resumo:
A numerical study on columnar-to-equiaxed transition (CET) during directional solidification of binary alloys is presented using a macroscopic solidification model. The position of CET is predicted numerically using a critical cooling rate criterion reported in literature. The macroscopic solidification model takes into account movement of solid phase due to buoyancy, and drag effect on the moving solid phase because of fluid motion. The model is applied to simulate the solidification process for binary alloys (Sn-Pb) and to estimate solidification parameters such as position of the liquidus, velocity of the liquidus isotherm, temperature gradient ahead of the liquidus, and cooling rate at the liquidus. Solidification phenomena under two cooling configurations are studied: one without melt convection and the other involvin thermosolutal convection. The numerically predicted positions of CET compare well with those of experiments reported in literature. Melt convection results in higher cooling rate, higher liquidus isotherm velocities, and stimulation of occurrence of CET in comparison to the nonconvecting case. The movement of solid phase aids further the process of CET. With a fixed solid phase, the occurrence of CET based on the same critical cooling rate is delayed and it occurs at a greater distance from the chill.
Resumo:
An attempt has been made at synthesis and in resolving some of the uncertainties related to the assignments of charge-transfer satellites in the X-ray photoelectron spectra of transition-metal and rare-earth compounds. New satellites are reported in the ligand core-hole spectra as well as in the metal core-level spectra of oxides of second- and third-row transition metals including rare earths. Satellites in the ligand levels and the metal levels tend to be mutually exclusive, a behaviour that can be understood on the basis of metal-ligand overlap. Systematics in the intensities and energy separations of satellites in the first-row transition-metal compounds have been examined in order to gain an insight into the nature of these satellites. A simple model involving the sudden approximation has been employed to explain the observed systematics in intensities of satellites appearing next to metal and ligand core levels on the basis of metal-ligand overlap.