17 resultados para Industrial Refrigeration
Resumo:
An industrial waste liquor having high sulfate concentrations was subjected to biological treatment using the sulfate-reducing bacteria (SRB) Desulfovibrio desulfuricans. Toxicity levels of different sulfate, cobalt and nickel concentrations toward growth of the SRB with respect to biological sulfate reduction kinetics was initially established. Optimum sulfate concentration to promote SRB growth amounted to 0.8 - 1 g/L. The strain of D. desulfuricans used in this study initially tolerated up to 4 -5 g/L of sulfate or 50 mg/L of cobalt and nickel, while its tolerance could be further enhanced through adaptation by serial subculturing in the presence of increasing concentrations of sulfate, cobalt and nickel. From the waste liquor, more than 70% of sulfate and 95% of cobalt and nickel could be precipitated as sulfides, using a preadapted strain of D. desulfuricans. Probable mechanisms involving biological sulfide precipitation and metal adsorption onto precipitates and bacterial cells are discussed.
Resumo:
Biodiesel run engines are gaining popularity since the last few years as a viable alternative to conventional petro-diesel based engines. In biodiesel exhaust the content of volatile organic compounds, oil mist, and mass of particulate matter is considerably lower. However, the concentration of oxides of nitrogen (NOx) is relatively higher. In this paper the biodiesel exhaust from a stationary engine is treated under controlled laboratory conditions for removal of NOx using dielectric barrier discharge plasma in cascade with adsorbents prepared from abundantly available industrial waste byproducts like red mud and copper slag. Results were compared with gamma-alumina, a commercial adsorbent. Two different dielectric barrier discharge (DBD) reactors were tested for their effectiveness under Repetitive pulses /AC energization. NOx removal as high as 80% was achieved with pulse energized reactors when cascaded with red mud as adsorbent.