94 resultados para Impact dampers
Resumo:
Spreading and receding processes of water drops impacting on a stainless steel surface comprising rectangular shaped parallel grooves are studied experimentally. The study was confined to the impact of drops in inertia dominated flow regime with Weber number in the range 15 - 257. Measurements of spreading drop diameter and drop height were obtained during the impact process as function of time. Experimental measurements of spreading drop diameter and drop height obtained for the grooved surface were compared with those obtained for a smooth surface to elucidate the influence of surface grooves on the impact process. The grooves definitely influence both spreading and receding processes of impacting liquid drops. A more striking observation from this study is that the receding process of impacting liquid drops is dramatically changed by the groove structure for all droplet Weber number.
Resumo:
Next generation wireless systems employ Orthogonal frequency division multiplexing (OFDM) physical layer owing to the high data rate transmissions that are possible without increase in bandwidth. While TCP performance has been extensively studied for interaction with link layer ARQ, little attention has been given to the interaction of TCP with MAC layer. In this work, we explore cross-layer interactions in an OFDM based wireless system, specifically focusing on channel-aware resource allocation strategies at the MAC layer and its impact on TCP congestion control. Both efficiency and fairness oriented MAC resource allocation strategies were designed for evaluating the performance of TCP. The former schemes try to exploit the channel diversity to maximize the system throughput, while the latter schemes try to provide a fair resource allocation over sufficiently long time duration. From a TCP goodput standpoint, we show that the class of MAC algorithms that incorporate a fairness metric and consider the backlog outperform the channel diversity exploiting schemes.
Resumo:
The cricket is one of most popular games in the Asian subcontinent and its popularity is increasing every day. The issue of replacement of the cricket ball amidst the matches is always an uncomfortable situation for teams, umpires and even supporters. At present the basis of the replacement is solely on the judgement, experience and expertise of the umpires, which is subjective, controversial and debatable. In this paper, we have attempted a new approach to quantify the number of impacts or impact factor of a 4-piece leather ball used in the Intemational one-day and test cricket matches. This gives a more objective and scientific basis/ criteria for the replacement of the ball. Here, we have used a well known and widely used Thermal Infra-Red (TIR) imaging to capture the dynamics of the thermal profice of the cricket ball, which has been heated for about 15 seconds. The idea behind this approach is the simple observation that an old ball (ball with a few impacts) has different thermal signature/profice compared to the that of a new ball. This could be due to the change in the surface profice and internal structure, minor de-shaping, opening of seam etc. The TIR video and its frames, which is inherently noisy, are restored using Hebbian learning based FIR (sic), which performs optimal smoothing in relatively less number of iteration. We have focussed on the hottest region of the ball i.e., the inner core and tracked its thermal profice dynamics. Finally we have used multi layer perceptron model (MLP) to quantify the impact factor with fairly good accuracy.
Resumo:
This paper deals with the development of simplified semi-empirical relations for the prediction of residual velocities of small calibre projectiles impacting on mild steel target plates, normally or at an angle, and the ballistic limits for such plates. It has been shown, for several impact cases for which test results on perforation of mild steel plates are available, that most of the existing semi-empirical relations which are applicable only to normal projectile impact do not yield satisfactory estimations of residual velocity. Furthermore, it is difficult to quantify some of the empirical parameters present in these relations for a given problem. With an eye towards simplicity and ease of use, two new regression-based relations employing standard material parameters have been discussed here for predicting residual velocity and ballistic limit for both normal and oblique impact. The latter expressions differ in terms of usage of quasi-static or strain rate-dependent average plate material strength. Residual velocities yielded by the present semi-empirical models compare well with the experimental results. Additionally, ballistic limits from these relations show close correlation with the corresponding finite element-based predictions.
Resumo:
The impact of riparian land use on the stream insect communities was studied at Kudremukh National Park located within Western Ghats, a tropical biodiversity hotspot in India. The diversity and community composition of stream insects varied across streams with different riparian land use types. The rarefied family and generic richness was highest in streams with natural semi evergreen forests as riparian vegetation. However, when the streams had human habitations and areca nut plantations as riparian land use type, the rarefied richness was higher than that of streams with natural evergreen forests and grasslands. The streams with scrub lands and iron ore mining as the riparian land use had the lowest rarefied richness. Within a landscape, the streams with the natural riparian vegetation had similar community composition. However, streams with natural grasslands as the riparian vegetation, had low diversity and the community composition was similar to those of paddy fields. We discuss how stream insect assemblages differ due to varied riparian land use patterns, reflecting fundamental alterations in the functioning of stream ecosystems. This understanding is vital to conserve, manage and restore tropical riverine ecosystems.
Resumo:
Uracil DNA glycosylase (Ung)initiates the uracil excision repair pathway. We have earlier characterized the Y66W and Y66H mutants of Ung and shown that they are compromised by similar to 7- and similar to 170-fold, respectively in their uracil excision activities. In this study, fluorescence anisotropy measurements show that compared with the wild-type, the Y66W protein is moderately compromised and attenuated in binding to AP-DNA. Allelic exchange of ung in Escherichia coli with ung::kan, ungY66H:amp or ungY66W:amp alleles showed similar to 5-, similar to 3.0- and similar to 2.0-fold, respectively increase in mutation frequencies. Analysis of mutations in the rifampicin resistance determining region of rpoB revealed that the Y66W allele resulted in an increase in A to G (or T to C) mutations. However, the increase in A to G mutations was mitigated upon expression of wild-type Ung from a plasmid borne gene. Biochemical and computational analyses showed that the Y66W mutant maintains strict specificity for uracil excision from DNA. Interestingly, a strain deficient in AP-endonucleases also showed an increase in A to G mutations. We discuss these findings in the context of a proposal that the residency of DNA glycosylase(s) onto the AP-sites they generate shields them until recruitment of AP-endonucleases for further repair.
Resumo:
Impacts of climate change on hydrology are assessed by downscaling large scale general circulation model (GCM) outputs of climate variables to local scale hydrologic variables. This modelling approach is characterized by uncertainties resulting from the use of different models, different scenarios, etc. Modelling uncertainty in climate change impact assessment includes assigning weights to GCMs and scenarios, based on their performances, and providing weighted mean projection for the future. This projection is further used for water resources planning and adaptation to combat the adverse impacts of climate change. The present article summarizes the recent published work of the authors on uncertainty modelling and development of adaptation strategies to climate change for the Mahanadi river in India.
Resumo:
This paper deals with the simulation-driven study of the impact of hardened steel projectiles on thin aluminium target plates using explicit finite element analysis as implemented in LS-DYNA. The evaluation of finite element modelling includes a comprehensive mesh convergence study using shell elements for representing target plates and the solid element-based representation of ogivalnosed projectiles. A user-friendly automatic contact detection algorithm is used for capturing interaction between the projectile and the target plate. It is shown that the proper choice of mesh density and strain rate-dependent material properties is crucial as these parameters significantly affect the computed residual velocity. The efficacy of correlation with experimental data is adjudged in terms of a 'correlation index' defined in the present study for which values close to unity are desirable.By simulating laboratory impact tests on thin aluminium plates carried out by earlier investigators, extremely good prediction of experimental ballistic limits has been observed with correlation indices approaching unity. Additional simulation-based parametric studies have been carried out and results consistent with test data have been obtained. The simulation procedures followed in the present study can be applied with confidence in designing thin aluminium armour plates for protection against low calibre projectiles.
Resumo:
The peaking of most oil reserves and impending climate change are critically driving the adoption of solar photovoltaic's (PV) as a sustainable renewable and eco-friendly alternative. Ongoing material research has yet to find a breakthrough in significantly raising the conversion efficiency of commercial PV modules. The installation of PV systems for optimum yield is primarily dictated by its geographic location (latitude and available solar insolation) and installation design (tilt, orientation and altitude) to maximize solar exposure. However, once these parameters have been addressed appropriately, there are other depending factors that arise in determining the system performance (efficiency and output). Dust is the lesser acknowledged factor that significantly influences the performance of the PV installations. This paper provides an appraisal on the current status of research in studying the impact of dust on PV system performance and identifies challenges to further pertinent research. A framework to understand the various factors that govern the settling/assimilation of dust and likely mitigation measures have been discussed in this paper. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.
Resumo:
Wettability gradient surfaces play a significant role in control and manipulation of liquid drops. The present work deals with the analysis of water drops impacting onto the junction line between hydrophobic texture and hydrophilic smooth portions of a dual-textured substrate made using stainless steel material. The hydrophobic textured portion of the substrate comprised of unidirectional parallel groove-like and pillar-like structures of uniform dimensions. A high-speed video camera recorded the spreading and receding dynamics of impacting drops. The drop impact dynamics during the early inertia driven impact regime remains unaffected by the dual-texture feature of the substrate. A larger retraction speed of drop liquid observed on the hydrophobic portion of the substrate during the impact of low velocity drops makes the drop liquid on the higher wettability portion to advance further (secondary drop spreading). The net horizontal drop velocity towards the hydrophilic portion of the dual-textured substrate decreases with increasing drop impact velocity. The available experimental results suggest that the movement of bulk drop liquid away from the impact point during drop impact on the dual-textured substrate is larger for the impact of low inertia drops. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present article deals with the development of a finite element modelling approach for the prediction of residual velocities of hard core ogival-nose projectiles following normal impact on mild steel target plates causing perforation. The impact velocities for the cases analysed are in the range 818–866.3 m/s. Assessment of finite element modelling and analysis includes a comprehensive mesh convergence study using shell elements for representing target plates and solid elements for jacketed projectiles with a copper sheath and a rigid core. Dynamic analyses were carried out with the explicit contact-impact LS-DYNA 970 solver. It has been shown that proper choice of element size and strain rate-based material modelling of target plate are crucial for obtaining test-based residual velocity.The present modelling procedure also leads to realistic representation of target plate failure and projectile sheath erosion during perforation, and confirms earlier observations that thermal effects are not significant for impact problems within the ordnance range. To the best of our knowledge, any aspect of projectile failure or degradation obtained in simulation has not been reported earlier in the literature. The validated simulation approach was applied to compute the ballistic limits and to study the effects of plate thickness and projectile diameter on residual velocity, and trends consistent with experimental data for similar situations were obtained.
Resumo:
The nuclear, aerospace, naval and missile industries place emphasis on materials with high structural integrity and reliable performance so as to meet certain stringent requirements in service. Strength is not the only criterion for selection. Properties such as fatigue resistance. impact toughness and fracture toughness are equally important. Electroslag refining (ESR) has been used widely and successfully over the years for improving the fatigue resistance, creep resistance, impact strength and fracture toughness of steels and alloy steels. But application of ESR to aluminium alloys is only a recent endeavour. A high-strength aircraft aluminium alloy IS: 7670 was therefore chosen for studies on the fatigue strength and the impact and fracture toughness. The results indicate that the fatigue resistance is considerably improved after refining and that the impact strength and fracture toughness of the refined alloy are comparable with that of the unrefined alloy.