18 resultados para ITEM RESPONSE THEORY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an analytical effective theory for the magnetic phase diagram for zigzag-edge terminated honeycomb nanoribbons described by a Hubbard model with an interaction parameter U. We show that the edge magnetic moment varies as ln U and uncover its dependence on the width W of the ribbon. The physics of this owes its origin to the sensory-organ-like response of the nanoribbons, demonstrating that considerations beyond the usual Stoner-Landau theory are necessary to understand the magnetism of these systems. A first-order magnetic transition from an antiparallel orientation of the moments on opposite edges to a parallel orientation occurs upon doping with holes or electrons. The critical doping for this transition is shown to depend inversely on the width of the ribbon. Using variational Monte Carlo calculations, we show that magnetism is robust to fluctuations. Additionally, we show that the magnetic phase diagram is generic to zigzag-edge terminated nanostructures such as nanodots. Furthermore, we perform first-principles modeling to show how such magnetic transitions can be realized in substituted graphene nanoribbons. DOI: 10.1103/PhysRevB.87.085412

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents the response of a vertically loaded pile in undrained clay considering spatially distributed undrained shear strength. The probabilistic study is performed considering undrained shear strength as random variable and the analysis is conducted using random field theory. The inherent soil variability is considered as source of variability and the field is modeled as two dimensional non-Gaussian homogeneous random field. Random field is simulated using Cholesky decomposition technique within the finite difference program and Monte Carlo simulation approach is considered for the probabilistic analysis. The influence of variance and spatial correlation of undrained shear strength on the ultimate capacity as summation of ultimate skin friction and end bearing resistance of pile are examined. It is observed that the coefficient of variation and spatial correlation distance are the most important parameters that affect the pile ultimate capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of doping trace amounts of noblemetals (Pt) on the gas sensing properties of chromium oxide thin films, is studied. The sensors are fabricated by depositing chromium oxide films on a glass substrate using a modified spray pyrolysis technique and characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The films are porous and nanocrystalline with an average crystallite size of similar to 30 nm. The typical p-type conductivity arises due to the presence of Cr vacancies, formed as a result of Cr non-stoichiometry, which is found to vary upon Pt doping. In order to analyze the effect of doping on the gas sensing properties, we have adopted a kinetic response analysis approach, which is based on Langmuir Adsorption isotherm (LA) theory. The sensor response is analyzed with equations obtained from LA theory and time constants as well as energies of adsorption-desorption are evaluated. It is seen that, Pt doping lowers the Schottky barrier height of the metal oxide semiconductor sensor from 222 meV to 172 meV. Subsequently the reduction in adsorption and desorption energies led to enhancement in sensor response and improvement in the kinetics of the sensor response i.e. the response time as well as recovery times of the sensor.