269 resultados para INTEGRAL SOLUTIONS
Resumo:
Recent experimental measurements of the distribution P(w) of transverse chain fluctuations w in concentrated solutions of F-actin filaments B. Wang, J Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010); J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchgessner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)] are shown to be well-fit to an expression derived from a model of the conformations of a single harmonically confined weakly bendable rod. The calculation of P(w) is carried out essentially exactly within a path integral approach that was originally applied to the study of one-dimensional randomly growing interfaces. Our results are generally as successful in reproducing experimental trends as earlier approximate results obtained from more elaborate many-chain treatments of the confining tube potential.
Resumo:
Recent experimental measurements of the distribution P(w) of transverse chain fluctuations w in concentrated solutions of F-actin filaments B. Wang, J Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010); J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchgessner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)] are shown to be well-fit to an expression derived from a model of the conformations of a single harmonically confined weakly bendable rod. The calculation of P(w) is carried out essentially exactly within a path integral approach that was originally applied to the study of one-dimensional randomly growing interfaces. Our results are generally as successful in reproducing experimental trends as earlier approximate results obtained from more elaborate many-chain treatments of the confining tube potential. (C) 2013 AIP Publishing LLC.
Resumo:
The quantum statistical mechanical propagator for a harmonic oscillator with a time-dependent force constant, m omega(2)(t), has been investigated in the past and was found to have only a formal solution in terms of the solutions of certain ordinary differential equations. Such path integrals are frequently encountered in semiclassical path integral evaluations and having exact analytical expressions for such path integrals is of great interest. In a previous work, we had obtained the exact propagator for motion in an arbitrary time-dependent harmonic potential in the overdamped limit of friction using phase space path integrals in the context of Levy flights - a result that can be easily extended to Brownian motion. In this paper, we make a connection between the overdamped Brownian motion and the imaginary time propagator of quantum mechanics and thereby get yet another way to evaluate the latter exactly. We find that explicit analytic solution for the quantum statistical mechanical propagator can be written when the time-dependent force constant has the form omega(2)(t) = lambda(2)(t) - d lambda(t)/dt where lambda(t) is any arbitrary function of t and use it to evaluate path integrals which have not been evaluated previously. We also employ this method to arrive at a formal solution of the propagator for both Levy flights and Brownian subjected to a time-dependent harmonic potential in the underdamped limit of friction. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A modified approach to obtain approximate numerical solutions of Fredholin integral equations of the second kind is presented. The error bound is explained by the aid of several illustrative examples. In each example, the approximate solution is compared with the exact solution, wherever possible, and an excellent agreement is observed. In addition, the error bound in each example is compared with the one obtained by the Nystrom method. It is found that the error bound of the present method is smaller than the ones obtained by the Nystrom method. Further, the present method is successfully applied to derive the solution of an integral equation arising in a special Dirichlet problem. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Exact N-wave solutions for the generalized Burgers equation u(t) + u(n)u(x) + (j/2t + alpha) u + (beta + gamma/x) u(n+1) = delta/2u(xx),where j, alpha, beta, and gamma are nonnegative constants and n is a positive integer, are obtained. These solutions are asymptotic to the (linear) old-age solution for large time and extend the validity of the latter so as to cover the entire time regime starting where the originally sharp shock has become sufficiently thick and the viscous effects are felt in the entire N wave.
Resumo:
Small-angle neutron scattering (SANS) measurements from bis-cationic C16H33N+(CH3)(2)-(CH2)(3)-N+ (CH3)(2)C16H33 2Br(-) dimeric surfactant, referred to as 16-3-16, at different concentrations and temperatures, are reported. It is seen that micelles are disc-like for concentrations C = 2.5 and 10 mM at temperature T = 30 degrees C. At low concentration C = 0.5 mM micelles are rod-like. Similarly, there is a disc to rod-like transition of micelles on increasing the temperature. For C = 2.5 mM, micelles are rod-like at T = 45 and 70 degrees C.
Resumo:
Numerical analysis of cracked structures often involves numerical estimation of stress intensity factors (SIFs) at a crack tip/front. A newly developed formulation called universal crack closure integral (UCCI) for the evaluation of potential energy release rates (PERRs) and the corresponding SIFs is presented in this paper. Unlike the existing element dedicated forms of crack closure integrals (MCCI, VCCI) with application limited to finite element analysis, this new numerical SIF/PERR estimation technique is independent of the basic stress analysis procedure, making it universally applicable. The second merit of this procedure is that it avoids the generally error-producing zones close to the crack tip/front singularity. The UCCI procedure, based on Irwin's original CCI, is formulated and explored using a simple 2D problem of a straight crack in an infinite sheet. It is then applied to some three-dimensional crack geometries with the stresses and displacements obtained from a boundary element program.
Resumo:
We present measurements of the rheology of suspensions of rigid spheres in a semi-dilute polymer solution from experiments of steady and oscillatory shear. For a given value of the shear rate gamma, addition of particles enhances the viscosity and the first normal stress difference but decreases the magnitude of the second normal stress difference. The viscosity eta exhibits a power law variation in gamma for a range of gamma that grows with phi. The first normal stress N-1 is positive and its value grows with phi; it exhibits a clear power law variation for the entire range of gamma that was studied. The second normal stress difference N-2 is negative for the pure polymer solution and much smaller in magnitude than N-1; on addition of particles, its magnitude further decreases, and it appears to change sign at large phi. The behavior of N-1 and N-2 is at odds with the findings of recent studies on particle-loaded dilute polymer solutions and polymer melts. The small-amplitude oscillatory shear experiments show the linear viscoelastic properties, G(') and G('), increasing with phi at a given value of the angular frequency omega. The dynamic viscosity of the suspension differs substantially from its steady shear viscosity, and the difference increases as gamma, omega -> 0.
Resumo:
In the context of removal of organic pollutants from wastewater, sonolysis of CCl4 dissolved in water has been widely investigated. These investigations are either completely experimental or correlate data empirically. In this work, a quantitative model is developed to predict the rate of sonolysis of aqueous CCl4. The model considers the isothermal growth and partially adiabatic collapse of cavitation bubbles containing gas and vapor leading to conditions of high temperatures and pressures in them, attainment of thermodynamic equilibrium at the end of collapse, release of bubble contents into the liquid pool, and reactions in the well-mixed pool. The model successfully predicts the extent of degradation of dissolved CCl4, and the influence of various parameters such as initial concentration of CCl4, temperature, and nature of gas atmosphere above the liquid. in particular, it predicts the results of Hua and Hoffmann (Environ. Sci Technol, 1996, 30, 864-871), who found that degradation is first order with CCl4 and that Argon as well as Ar-O-3 atmospheres give the same results. The framework of the model is capable of quantitatively describing the degradation of many dissolved organics by considering all the involved species.
Resumo:
A method is presented for obtaining useful closed form solution of a system of generalized Abel integral equations by using the ideas of fractional integral operators and their applications. This system appears in solving certain mixed boundary value problems arising in the classical theory of elasticity.
Resumo:
In this article, a non-autonomous (time-varying) semilinear system is considered and its approximate controllability is investigated. The notion of 'bounded integral contractor', introduced by Altman, has been exploited to obtain sufficient conditions for approximate controllability. This condition is weaker than Lipschitz condition. The main theorems of Naito [11, 12] are obtained as corollaries of our main results. An example is also given to show how our results weaken the conditions assumed by Sukavanam[17].
Resumo:
This paper presents the proper computational approach for the estimation of strain energy release rates by modified crack closure integral (MCCI). In particular, in the estimation of consistent nodal force vectors used in the MCCI expressions for quarter-point singular elements (wherein all the nodal force vectors participate in computation of strain energy release rates by MCCI). The numerical example of a centre crack tension specimen under uniform loading is presented to illustrate the approach.
Resumo:
The rectangular dielectric waveguide is the most commonly used structure in integrated optics, especially in semi-conductor diode lasers. Demands for new applications such as high-speed data backplanes in integrated electronics, waveguide filters, optical multiplexers and optical switches are driving technology toward better materials and processing techniques for planar waveguide structures. The infinite slab and circular waveguides that we know are not practical for use on a substrate because the slab waveguide has no lateral confinement and the circular fiber is not compatible with the planar processing technology being used to make planar structures. The rectangular waveguide is the natural structure. In this review, we have discussed several analytical methods for analyzing the mode structure of rectangular structures, beginning with a wave analysis based on the pioneering work of Marcatili. We study three basic techniques with examples to compare their performance levels. These are the analytical approach developed by Marcatili, the perturbation techniques, which improve on the analytical solutions and the effective index method with examples.
Inverse Sensitivity Analysis of Singular Solutions of FRF matrix in Structural System Identification
Resumo:
The problem of structural damage detection based on measured frequency response functions of the structure in its damaged and undamaged states is considered. A novel procedure that is based on inverse sensitivity of the singular solutions of the system FRF matrix is proposed. The treatment of possibly ill-conditioned set of equations via regularization scheme and questions on spatial incompleteness of measurements are considered. The application of the method in dealing with systems with repeated natural frequencies and (or) packets of closely spaced modes is demonstrated. The relationship between the proposed method and the methods based on inverse sensitivity of eigensolutions and frequency response functions is noted. The numerical examples on a 5-degree of freedom system, a one span free-free beam and a spatially periodic multi-span beam demonstrate the efficacy of the proposed method and its superior performance vis-a-vis methods based on inverse eigensensitivity.
Resumo:
A direct method of solution is presented for singular integral equations of the first kind, involving the combination of a logarithmic and a Cauchy type singularity. Two typical cages are considered, in one of which the range of integration is a Single finite interval and, in the other, the range of integration is a union of disjoint finite intervals. More such general equations associated with a finite number (greater than two) of finite, disjoint, intervals can also be handled by the technique employed here.