21 resultados para IMPLANT FRAMEWORKS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In continuation of our interest in pyrazole based multifunctional metal-organic frameworks (MOFs), we report herein the construction of a series of Co(II) MOFs using a bis-pyrazole ligand and various benzene polycarboxylic acids. Employment of different acids has resulted in different architectures ranging from a two-dimensional grid network, porous nanochannels with interesting double helical features such as supramolecular chicken wire, to three-dimensional diamondoid networks. One of the distinguishing features of the network is their larger dimensions which can be directly linked to a relatively larger size of the ligand molecule. Conformational flexibility of the ligand also plays a decisive role in determining both the dimensionality and topology of the final structure. Furthermore, chirality associated with helical networks and magnetic properties of two MOFs have also been investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of trace amounts of explosive materials is significantly important for security concerns and pollution control. Four multicomponent metal organic frameworks (MOFs-12, 13, 23, and 123) have been synthesized by employing ligands embedded with fluorescent tags. The multicomponent assembly of the ligands was utilized to acquire a diverse electronic behavior of the MOFs and the fluorescent tags were strategically chosen to enhance the electron density in the MOFs. The phase purity of the MOFs was established by PXRD, NMR spectroscopy, and finally by singlecrystal XRD. Single-crystal structures of the MOFs-12 and 13 showed the formation of three-dimensional porous networks with the aromatic tags projecting inwardly into the pores. These electron-rich MOFs were utilized for detection of ex- plosive nitroaromatic compounds (NACs) through fluorescence quenching with high selectivity and sensitivity. The rate of fluorescence quenching for all the MOFs follows the order of electron deficiency of the NACs. We also showed the detection of picric acid (PA) by luminescent MOFs is not always reliable and can be misleading. This attracts our attention to explore these MOFs for sensing picryl chloride (PC), which is as explosive as picric acid and used widely to prepare more stable explosives like 2,4,6-trinitroaniline from PA. Moreover, the recyclability and sensitivity studies indicated that these MOFs can be reused several times with parts per billion (ppb) levels of sensitivity towards PC and 2,4,6-trinitrotoluene (TNT).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem associated with metal nanoparticle (NP) agglomeration when trying to achieve a high loading amount has been solved by a new method of functionalization of MOFs' pores with terminal alkyne moieties. The alkynophilicity of the Au3+ ions has been utilized successfully for an exceptionally high loading (similar to 50 wt%) of Au-NPs on supported functionalized MOFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding technology evolution through periodic landscaping is an important stage of strategic planning in R&D Management. In fields like that of healthcare, where the initial R&D investment is huge and good medical product serve patients better, these activities become crucial. Approximately five percentage of the world population has hearing disabilities. Current hearing aid products meet less than ten percent of the global needs. Patent data and classifications on cochlear implants from 1977-2010, show the landscapes and evolution in the area of such implant. We attempt to highlight emergence and disappearance of patent classes over period of time showing variations in cochlear implant technologies. A network analysis technique is used to explore and capture technology evolution in patent classes showing what emerged or disappeared over time. Dominant classes are identified. The sporadic influence of university research in cochlear implants is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular organization of donor and acceptor chromophores in self-assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light-harvesting systems. With this in mind, a redox-active porous interpenetrated metal-organic framework (MOF), {Cd(bpdc)(bpNDI)]4.5H(2)ODMF}(n) (1) has been constructed from a mixed chromophoric system. The -oxo-bridged secondary building unit, {Cd-2(-OCO)(2)}, guides the parallel alignment of bpNDI (N,N-di(4-pyridyl)-1,4,5,8-naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH(2)=4,4-biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter-net electron transfer. Encapsulation of electron-donating aromatic molecules in the electron-deficient channels of 1 leads to a perfect donor-acceptor co-facial organization, resulting in long-lived charge-separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions between Zn(NO3)(2)center dot 6H(2)O, Na2S2O3, 4,4'-bipyridine (bpy), 1,2-bis(4-pyridyl)ethene (bpe), 1,2-bis (4-pyridyl) ethane (bpa), and 1,3-bis(4-pyridyl)propane (bpp) under solvothermal conditions resulted in four new zinc thiosulfate hybrid compounds. Compound I has four-membered zinc thiosulfate rings connected by the ligand, 1,3-bis(4-pyridyl)propane (bpp) forming a two-dimensional structure. Compounds II-IV have one-dimensional zinc thiosulfate chains connected by the ligands, bpy (II), bpe (III), and bpa (IV) giving rise to three-dimensional structures. All the four-structures exhibit 3-fold interpenetration. Proton conductivity studies indicate reasonable proton mobility at 34 degrees C and at 98% relative humidity. The compounds also exhibit Lewis acid character and good photocatalytic activity for the decomposition of cationic dyes.