44 resultados para IMPENETRABLE BOSONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The superfluid state of fermion-antifermion fields developed in our previous papers is generalized to include higher orbital and spin states. In addition to single-particle excitations, the system is capable of having real and virtual bound or quasibound composite excitations which are akin to bosons of spinJ P equal to0 �, 1�, 2+, etc. These pseudoscalar, vector, and tensor bosons can be massive or massless and provide the vehicles for strong, electromagnetic, weak, and gravitational interactions. The concept that the basic (unmanifest) fermion-antifermion interaction can lead to a multiplicity of manifest interactions seems to provide a basis for a unified field theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the possibility of fingerprinting the presence of heavy additional Z' bosons that arise naturally in extensions of the standard model such as E-6 models and left-right symmetric models, through their mixing with the standard model Z boson. By considering a class of observables including total cross sections, energy distributions and angular distributions of decay leptons we find significant deviation from the standard model predictions for these quantities with right-handed electrons and left-handed positrons at root s= 800GeV. The deviations being less pronounced at smaller centre of mass energies as the models are already tightly constrained. Our work suggests that the ILC should have a strong beam polarization physics program particularly with these configurations. On the other hand, a forward backward asymmetry and lepton fraction in the backward direction are more sensitive to new physics with realistic polarization due to interesting interplay with the neutrino t-channel diagram. This process complements the study of fermion pair production processes that have been considered for discrimination between these models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present analytic results to show that the Schwinger-boson hole-fermion mean-field state exhibits non-Fermi liquid behavior due to spin-charge separation. The physical electron Green's function consists of three additive components. (a) A Fermi-liquid component associated with the bose condensate. (b) A non-Fermi liquid component which has a logarithmic peak and a long tail that gives rise to a linear density of states that is symmetric about the Fermi level and a momentum distribution function with a logarithmic discontinuity at the Fermi surface. (c) A second non-Fermi liquid component associated with the thermal bosons which leads to a constant density of states. It is shown that zero-point fluctuations associated with the spin-degrees of freedom are responsible for the logarithmic instabilities and the restoration of particle-hole symmetry close to the Fermi surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the problem of two anyons interacting through a simple harmonic potential or a Coulomb potential is supersymmetric. The supersymmetry operators map a theory described by statistics parameter θ to one described by π+θ. Thus fermions and bosons go into each other, while semions are supersymmetric by themselves. The simple harmonic problem has a Sp(4) symmetry for any value of θ which explains the energy degeneracies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the Thomas-Fermi method to examine the thermodynamics of particles obeying Haldane exclusion statistics. Specifically, we study Calogero-Sutherland particles placed in a given external potential in one dimension. For the case of a simple harmonic potential (constant density of states), we obtain the exact one-particle spatial density and a {\it closed} form for the equation of state at finite temperature, which are both new results. We then solve the problem of particles in a $x^{2/3} ~$ potential (linear density of states) and show that Bose-Einstein condensation does not occur for any statistics other than bosons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physics potential of e(+) e(-) linear colliders is summarized in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, i.e. compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders lip to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e(+) e(-) linear colliders and the high precision with which the properties of particles and their interactions can be analyzed, define an exciting physics program complementary to hadron machines. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have made a detailed study of the signals expected at CERN LEP 2 from charged scalar bosons whose dominant decay channels are into four fermions. The event rates as well as kinematics of the final states are discussed when such scalars are either pair produced or are generated through a tree-level interaction involving a charged scalar, the W, and the Z. The backgrounds in both cases are discussed. We also suggest the possibility of reconstructing the mass of such a scalar at LEP 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the ground state of interacting spin-1/2 fermions in three dimensions at a finite density (rho similar to k(F)(3)) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector lambda equivalent to (lambda(x),lambda(y),lambda(z)), whose magnitude lambda determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (k(F)vertical bar a(s)vertical bar less than or similar to 1), the ground state in the absence of the gauge field (lambda = 0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (lambda = 0). For large gauge couplings (lambda/k(F) >> 1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)-we call these bosons ``rashbons.'' In the absence of interactions (a(s) = 0(-)), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling lambda(T). For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of lambda near lambda(T). In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the effect of a general HZZ coupling through a study of the Higgs decay to leptons via Z bosons at the LHC. We discuss various methods for placing limits on additional couplings, including measurement of the partial width, threshold scans, and asymmetries constructed from angular observables. We find that only the asymmetries provide a definitive test of additional couplings. We further estimate the significances they provide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the use of beam polarisation as well as nal state polarisation efects in probing the interaction of the Higgs boson with a pair of heavy vector bosons in the process e+e! ffH, where f is any light fermion. The sensitivity of the International Linear Collider (ILC) operating at ps = 500 GeV, to such V V H(V = W=Z) couplings is examined in a model independent way. The efects of ISR and beamstrahlung are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Report of the Higgs working group for the Workshop "Physics at TeV Colliders", Les Houches, France 8-18 June 1999. It contains 6 separate sections: 1. Measuring Higgs boson couplings at the LHC. 2. Higgs boson production at hadron colliders at NLO. 3. Signatures of Heavy Charged Higgs Bosons at the LHC. 4. Light stop effects and Higgs boson searches at the LHC. 5. Double Higgs production at TeV Colliders in the MSSM. 6. Programs and Tools for Higgs Bosons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop an inhomogeneous mean-field theory for the extended Bose-Hubbard model with a quadratic, confining potential. In the absence of this potential, our mean-field theory yields the phase diagram of the homogeneous extended Bose-Hubbard model. This phase diagram shows a superfluid (SF) phase and lobes of Mott-insulator (MI), density-wave (DW), and supersolid (SS) phases in the plane of the chemical potential mu and on-site repulsion U; we present phase diagrams for representative values of V, the repulsive energy for bosons on nearest-neighbor sites. We demonstrate that, when the confining potential is present, superfluid and density-wave order parameters are nonuniform; in particular, we obtain, for a few representative values of parameters, spherical shells of SF, MI, DW, and SS phases. We explore the implications of our study for experiments on cold-atom dipolar condensates in optical lattices in a confining potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the possibility of finger printing a strongly interacting W boson sector which is consistent with present day LHC searches at the ILC with longitudinal as well as transversely polarized electron and positron beams. We account for the final state interaction using a suitable Omnes formalism in terms of a plausible resonance description, and carry out thorough analyses of cross sections, asymmetries and angular distributions of the W's. We carry out a comparison with other extensions of the Standard Model, where heavy additional Z' bosons arise naturally. We also consider the effect of the strong final state interaction on a correlation that depends on (phi(-) -phi(+)),where the phi-(+) are the azimuthal angles of decay leptons, and find that it is a useful discriminant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the presence of a synthetic non-Abelian gauge field that produces a Rashba-like spin-orbit interaction, a collection of weakly interacting fermions undergoes a crossover from a Bardeen-Cooper-Schrieffer (BCS) ground state to a Bose-Einstein condensate (BEC) ground state when the strength of the gauge field is increased (Vyasanakere et al 2011 Phys. Rev. B 84 014512). The BEC that is obtained at large gauge coupling strengths is a condensate of tightly bound bosonic fermion pairs. The properties of these bosons are solely determined by the Rashba gauge field-hence called rashbons. In this paper, we conduct a systematic study of the properties of rashbons and their dispersion. This study reveals a new qualitative aspect of the problem of interacting fermions in non-Abelian gauge fields, i.e. that the rashbon state ceases to exist when the center-of-mass momentum of the fermions exceeds a critical value that is of the order of the gauge coupling strength. The study allows us to estimate the transition temperature of the rashbon BEC and suggests a route to enhance the exponentially small transition temperature of the system with a fixed weak attraction to the order of the Fermi temperature by tuning the strength of the non-Abelian gauge field. The nature of the rashbon dispersion, and in particular the absence of the rashbon states at large momenta, suggests a regime in parameter space where the normal state of the system will be a dynamical mixture of uncondensed rashbons and unpaired helical fermions. Such a state should show many novel features including pseudogap physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an extensive study of Mott insulator (MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with harmonic traps. For this we apply the inhomogeneous mean-field theory developed by Sheshadri et al. Phys. Rev. Lett. 75, 4075 (1995)]. Our results for the BH model with one type of spinless bosons agree quantitatively with quantum Monte Carlo simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also extend our inhomogeneous mean-field theory to study BH models with harmonic traps and (a) two species of bosons or (b) spin-1 bosons. With two species of bosons, we obtain rich phase diagrams with a variety of SF and MI phases and associated shells when we include a quadratic confining potential. For the spin-1 BH model, we show, in a representative case, that the system can display alternating shells of polar SF and MI phases, and we make interesting predictions for experiments in such systems.