66 resultados para Hydraulic fracturing
Resumo:
An analytical solution is presented, making use of the Schwartz-Christoffel transformation, for determining the seepage characteristics for the problem of flow under a weir having two unequal sheetpiles at the ends and embedded in an anisotropic porous medium of finite thickness. Results for several particular cases of simple hydraulic structures can be obtained from the general solution presented. Numerical results in nondimensional form have been given for quantity of seepage and exit gradient distribution for various conditions in the equivalent transformed isotropic section and, by making use of the physical parameters in the actual anisotropic plane and the set of transformation relations given, these quantities (seepage loss, exit gradient) can be interpreted in the actual anisotropic physical plane.
Resumo:
The unconfined aquifer of the Continental Terminal in Niger was investigated by magnetic resonance sounding (MRS) and by 14 pumping tests in order to improve calibration of MRS outputs at field scale. The reliability of the standard relationship used for estimating aquifer transmissivity by MRS was checked; it was found that the parametric factor can be estimated with an uncertainty a parts per thousand currency sign150% by a single point of calibration. The MRS water content (theta (MRS)) was shown to be positively correlated with the specific yield (Sy), and theta (MRS) always displayed higher values than Sy. A conceptual model was subsequently developed, based on estimated changes of the total porosity, Sy, and the specific retention Sr as a function of the median grain size. The resulting relationship between theta (MRS) and Sy showed a reasonably good fit with the experimental dataset, considering the inherent heterogeneity of the aquifer matrix (residual error is similar to 60%). Interpreted in terms of aquifer parameters, MRS data suggest a log-normal distribution of the permeability and a one-sided Gaussian distribution of Sy. These results demonstrate the efficiency of the MRS method for fast and low-cost prospection of hydraulic parameters for large unconfined aquifers.
Resumo:
The velocity profile in turbulent pipe flow is usually divided into two regions, a wall or inner region and a core or outer region. For the inner region, the viscosity and wall shear stress are the important parameters governing the velocity distribution whereas for the outer region, the wall reduces the velocity below the maximum velocity independent of viscosity. In the present work, a velocity model is proposed for turbulent flow in the wall region of a pipe covering the entire transition from smooth to rough flows. Coupling this model for the wall region with the power law velocity model for the core region, an equation for the friction factor is obtained. The model constants are evaluated by using Nikuradse's experiments in the fully smooth and rough turbulent flows. The model shows good agreement with the friction factor and the velocity profiles obtained by Nikuradse for the transition region of turbulent flow.
Resumo:
The flow resistance of an alluvial channel flow is not only affected by the Reynolds number and the roughness conditions but also the Froude number. Froude number is the most basic parameter in the case of the alluvial channel, thus effect of Froude number on resistance to flow should be considered in the formulation of the friction factor, which is not in the case of present available resistance equations. At present, no generally acceptable quantitative description of the effects of the Froude number on hydraulic resistance has been developed. Metamodeling technique, which is particularly useful in modeling a complex processes or where knowledge of the physics is limited, is presented as a tool complimentary to modeling friction factor in alluvial channels. Present work uses, a radial basis metamodel, which is a type of neural network modeling, to find the effect of Froude number on the flow resistance. Based on the experimental data taken from different sources, it has been found that the predicting capability of the present model is on acceptable level. Present work also tries in formulating an empirical equation for resistance in alluvial channel comprising all the three majorm, parameters, namely, roughness parameter, Froude number and Reynolds number. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Microbiological quality of the treated wastewater is an important parameter for its reuse. The data oil the Fecal Coliform (FC) and Fecal Streptococcus (FS) at different stages of treatment in the Sewage Treatment Plants (STPs) in Delhi watershed is not available, therefore in the present study microbial profiling of STPs was carried out to assess the effluent quality for present and future reuse options. This Study further evaluates the water quality profiles at different stages of treatment for 16 STPs in Delhi city. These STPs are based on conventional Activated Sludge Process (ASP), extended aeration, physical, chemical and biological treatment (BIOFORE), Trickling Filter and Oxidation Pond. The primary effluent quality produced from most of the STPs was suitable for Soil Aquifer Treatment (SAT). Extended Hydraulic Retention Time (HRT) as a result Of low inflow to the STPS Was responsible for high turbidity, COD and BODs removal. Conventional ASP based STPs achieved 1.66 log FC and 1.06 log FS removal. STPs with extended aeration treatment process produced better quality effluent with maximum 4 log order reduction in FC and FS levels. ``Kondli'' and ``Nilothi'' STPs employing ASP, produced better quality secondary effluent as compared to other STPs based oil similar treatment process. Oxidation Pond based STPs showed better FC and FS removals, whereas good physiochemical quality was achieved during the first half of the treatment. Based upon physical, chemical and microbiological removal efficiencies, actual integrated efficiency (IEa) of each STP was determined to evaluate its Suitability for reuse for irrigation purposes. Except Mehrauli'' and ``Oxidation Pond'', effluents from all other STPs require tertiary treatment for further reuse. Possible reuse options, depending Upon the geographical location, proximity of facilities of potential users based oil the beneficial uses, and sub-soil types, etc. for the Delhi city have been investigated, which include artificial groundwater recharge, aquaculture, horticulture and industrial uses Such as floor washing, boiler feed, and cooling towers, etc. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year(-1) and the evapotranspiration was about 900 mm year(-1) out of which 100 mm year(-1) was uptake from the deep saprolite horizons. The stream flow was 100 mm year(-1) while the groundwater underflow was 80 mm year(-1). The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and the entire fracture process was simulated using a regular triangular two-dimensional lattice network only over the expected fracture proces zone width. The rest of the beam specimen was discretised by a coarse triangular finite element mesh. The discrete grain structure of the concrete was generated assuming the grains to be spherical. The load versus CMOD plots thus simulated agreed reasonably well with the experimental results. Moreover, acoustic emission (AE) hits were recorded during the test and compared with the number of fractured lattice elements. It was found that the cumulative AE hits correlated well with the cumulative fractured lattice elements at all load levels thus providing a useful means for predicting when the micro-cracks form during the fracturing process, both in the pre-peak and in the post-peak regimes.
Resumo:
Seepage through a sand bed affects the channel hydrodynamics, which in turn alters channel stability. Thus, the effect of seepage on its hydrodynamic parameters needs to be ascertained. The present work analyses spatially varied flow of a sand-bed channel subjected to seepage in the downward direction through a sand bed. Numerically calculated flow profiles affected by seepage have been verified using experimental observations. The present work also analyses the friction slope, velocity and bed shear stress variations along the channel for both seepage and no-seepage conditions. It was found that the downward seepage-induced channel flow has larger friction slope and bed shear stress than that of no-seepage.
Resumo:
A detailed theoretical analysis of flow through a quadrant plate weir is made in the light of the generalized theory of proportional weirs, using a numerical optimization procedure. It is shown that the flow through the quadrant plate weir has a linear discharge-head relationship valid for certain ranges of head. It is shown that the weir is associated with a reference plane or datum from which all heads are reckoned.Further, it is shown that the measuring range of the quadrant plate weir can be considerably enhanced by extending the tangents to the quadrants at the terminals of the quadrant plate weir. The importance of this weir (when the datum of the weir lies below its crest) as an outlet weir for grit chambers is highlighted. Experiments show excellent agreement with the theory by giving a constant average coefficient of discharge.
Resumo:
Present in situ chemical treatment technologies for mitigation of petroleum hydrocarbon contamination are in the developmental stage or being tested. To devise efficient strategies for restricting the movement of petroleum hydrocarbon (PHC) molecules in the contaminated soil, it is proposed to utilize the sorption–interaction relationships between the petroleum contaminants and the soil substrate. The basic questions addressed in this paper are as follows (i) What are the prominent chemical constituents of the various petroleum fractions that interact with the soil substrate? (ii) What are the functional groups of a soil that interact with the contaminants? (iii) What are the bonding mechanisms possible between the soil functional groups and the PHC contaminants? (iv) What are the consequent changes brought about the soil physical properties on interaction with PHC's? (v) What are the factors influencing the interactions between PHC molecules and clay particles of the soil substrate? (vi) What is the possibility of improving the soil's attenuation ability for PHC's? The development of answers to the basic questions reveal that petroleum hydrocarbons comprise a mixture of nonpolar alkanes and aromatic and polycyclic hydrocarbons, that have limited solubility in water. The bonding mechanism between the nonpolar PHC's and the clay surface is by way of van der Waals attraction. The adsorption of the nonpolar hydrocarbons by the clay surface occurs only when their (i.e., the hydrocarbon molecules) solubility in water is exceeded and the hydrocarbons exist in the micellar form. Dilute solutions of hydrocarbons in water, i.e., concentrations of hydrocarbons at or below the solubility limit, have no effect on the hydraulic conductivity of clay soils. Permeation with pure hydrocarbons invariably influences the clay hydraulic conductivity. To improve the attenuation ability of soils towards PHC's, it is proposed to coat the soil surface with "ultra" heavy organic polymers. Adsorption of organic polymers by the clay surface may change the surface properties of the soil from highly hydrophilic (having affinity for water molecules) to organophilic (having affinity for organic molecules). The organic polymers attached to the clay surface are expected to attenuate the PHC molecules by van der Waals attraction, by hydrogen bonding, and also by adsorption into interlayer space in the case of soils containing swelling clays.
Resumo:
Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulic conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A performance prediction model generally applicable for volute-type centrifugal pumps has been extended to predict the dynamic characteristics of a pump during its normal starting and stopping periods. Experiments have been conducted on a volute pump with different valve openings to study the dynamic behaviour of the pump during normal start-up and stopping, when a small length of discharge pipeline is connected to the discharge flange of the pump. Such experiments have also been conducted when the test pump was part of a hydraulic system, an experimental rig, where it is pumping against three similar pumps, known as supply pumps, connected in series, with the supply pumps kept idle or running. Instantaneous rotational speed, flowrate, and delivery and suction pressures of the pump were recorded and it was observed in all the tested cases that the change of pump behaviour during the transient period was quasi-steady, which validates the quasi-steady approach presented in this paper. The nature of variation of parameters during the transients has been discussed. The model-predicted dynamic head-capacity curves agree well with the experimental data for almost all the tested cases.
Resumo:
This paper proposes a hybrid solar cooking system where the solar energy is brought to the kitchen. The energy source is a combination of the solar thermal energy and the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. The solar thermal energy is transferred to the kitchen by means of a circulating fluid. The transfer of solar heat is a twofold process wherein the energy from the collector is transferred first to an intermediate energy storage buffer and the energy is subsequently transferred from the buffer to the cooking load. There are three parameters that are controlled in order to maximize the energy transfer from the collector to the load viz, the fluid flow rate from collector to buffer, fluid flow rate from buffer to load and the diameter of the pipes. This is a complex multi energy domain system comprising energy flow across several domains such as thermal, electrical and hydraulic. The entire system is modeled using the bond graph approach with seamless integration of the power flow in these domains. A method to estimate different parameters of the practical cooking system is also explained. Design and life cycle costing of the system is also discussed. The modeled system is simulated and the results are validated experimentally. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A two-dimensional numerical model which employs the depth-averaged forms of continuity and momentum equations along with k-e turbulence closure scheme is used to simulate the flow at the open channel divisions. The model is generalised to flows of arbitrary geometries and MacCormack finite volume method is used for solving governing equations. Application of cartesian version of the model to analyse the flow at right-angled junction is presented. The numerical predictions are compared with experimental data of earlier investigators and measurements made as part of the present study. Performance of the model in predicting discharge distribution, surface profiles, separation zone parameters and energy losses is evaluated and discussed in detail. To illustrate the application of the numerical model to analyse the flow in acute angled offtakes and streamlined branch entries, a few computational results are presented.