126 resultados para Hot isostatic pressing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. The product yield is very low. Heat transfer plays an important role in the formation of boron carbide. Temperature at the core reaches up to 2600 K. No experimental study is available in the open literature for this high temperature process particularly in terms of temperature measurement and heat transfer. Therefore, a laboratory scale hot model of the process has been setup to measure the temperatures in harsh conditions at different locations in the furnace using various temperature measurement devices such as pyrometer and various types of thermocouple. Particular attention was paid towards the accuracy and reliability of the measured data. The recorded data were analysed to understand the heat transfer process inside the reactor and the effect of it on the formation of boron carbide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grain size dependence of the yield stress in hot rolled 99.87 pct magnesium sheets and rods was measured in the temperature range 77 K to 420 K. Hot rolling produced strong basal textures and, for a given grain size, the hot rolled material has a higher strength than extruded material. The yield strength-grain size relation in the above temperature range follows the Hall-Petch equation, and the temperature dependencies of the Hall-Petch constants σ0 and k are in support of the theory of Armstrong for hcp metals that the intercept σ0 is related to the critical resolved shear stress (CRSS) for basal slip (easy slip) and the slope k is related to the CRSS for prismatic slip (difficult slip) occurring near the grain boundaries. In the hot rolled magnesium, σ0 is larger and k is smaller than in extruded material, observations which are shown to result from strong unfavorable basal and favorable 1010 textures, respectively. Texture affects the Hall-Petch constants through its effect on the orientation factors relating them to the CRSS for the individual slip systems controlling them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grain size dependencies of the yield and fracture stresses in hot rolled Mg-12.7 at % Cd alloy have been measured in the temperature range 77 to 420 K and are found to be in accordance with HalI-Petch type of equations. In hot rolled Mg-12.7 Cd alloy, the HalI-Petch intercept a w is higher than that in hot rolled magnesium, while the slope ky is comparable. The fracture is intercrystalline at 77 K, mixed mode at 300 K and ductile at 420 K. The above flow and fracture behaviours are interpreted in terms of the complimentary effects of texture hardening and solid solution strengthening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method of modeling material behavior which accounts for the dynamic metallurgical processes occurring during hot deformation is presented. The approach in this method is to consider the workpiece as a dissipator of power in the total processing system and to evaluate the dissipated power co-contentJ = ∫o σ ε ⋅dσ from the constitutive equation relating the strain rate (ε) to the flow stress (σ). The optimum processing conditions of temperature and strain rate are those corresponding to the maximum or peak inJ. It is shown thatJ is related to the strain-rate sensitivity (m) of the material and reaches a maximum value(J max) whenm = 1. The efficiency of the power dissipation(J/J max) through metallurgical processes is shown to be an index of the dynamic behavior of the material and is useful in obtaining a unique combination of temperature and strain rate for processing and also in delineating the regions of internal fracture. In this method of modeling, noa priori knowledge or evaluation of the atomistic mechanisms is required, and the method is effective even when more than one dissipation process occurs, which is particularly advantageous in the hot processing of commercial alloys having complex microstructures. This method has been applied to modeling of the behavior of Ti-6242 during hot forging. The behavior of α+ β andβ preform microstructures has been exam-ined, and the results show that the optimum condition for hot forging of these preforms is obtained at 927 °C (1200 K) and a strain rate of 1CT•3 s•1. Variations in the efficiency of dissipation with temperature and strain rate are correlated with the dynamic microstructural changes occurring in the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional metamorphic belts provide important constraints on the plate tectonic architecture of orogens. We report here a detailed petrologic examination of the sapphirine-bearing ultra-high temperature (UHT) granulites from the Jining Complex within the Khondalite Belt of the North China Craton (NCC). These granulites carry diagnostic UHT assemblages and their microstructures provide robust evidence to trace the prograde, peak and retrograde metamorphic evolution. The P–T conditions of the granulites estimated from XMgGrt(Mg/Fe + Mg) − XMgSpr isopleth calculations indicate temperature above 970 °C and pressures close to 7 kbar. We present phase diagrams based on thermodynamic computations to evaluate the mineral assemblages and microstructures and trace the metamorphic trajectory of the rocks. The evolution from Spl–Qtz–Ilm–Crd–Grt–Sil to Spr–Qtz–Crd–Opx–Ilm marks the prograde stage. The Spl–Qtz assemblage appears on the low-pressure side of the P–T space with Spr–Qtz stable at the high-pressure side, possibly representing an increase in pressure corresponding to compression. The spectacular development of sapphirine rims around spinel enclosed in quartz supports this inference. An evaluation of the key UHT assemblages based on model proportion calculation suggests a counterclockwise P–T path. With few exceptions, granulite-facies rocks developed along collisional metamorphic zones have generally been characterized by clockwise exhumation trajectories. Recent evaluation of the P–T paths of metamorphic rocks developed within collisional orogens indicates that in many cases the exhumation trajectories follow the model subduction geotherm, in accordance with a tectonic model in which the metamorphic rocks are subducted and exhumed along a plate boundary. The timing of UHT metamorphism in the NCC (c. 1.92 Ga) coincides with the assembly of the NCC within the Paleoproterozoic Columbia supercontinent, a process that would have involved subduction of passive margins sediments and closure of the intervening ocean. Thus, the counterclockwise P–T path obtained in this study correlates well with a tectonic model involving subduction and final collisional suturing, with the UHT granulites representing the core of the hot or ultra-hot orogen developed during Columbia amalgamation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroslag refining is a useful remelting process by which clean steels can be produced for sophisticated applications. In this investigation, AISI 4340 steel has been electroslag refined and the improvement in its hot ductility has been assessed using hot torsion tests; electroslag refining has improved the hot ductility considerably. The temperature at which peak ductility is obtained has also increased — from 1473 K in the unrefined steel to 1573 K in ESR steel. Results indicate that it should be possible to subject the ESR ingot to much higher strains per unit operation during industrial hot working processes such as forging, which would result in a considerable saving of power. The improvement in hot ductility in ESR steel has been attributed primarily to the removal of non-metallic inclusions and the reduction in sulphur content. From the apparent activation energy estimated from the hot torsion data, the dynamic recrystallization process is identified as the mechanism controlling the rate of hot deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The hot dog fold has been found in more than sixty proteins since the first report of its existence about a decade ago. The fold appears to have a strong association with fatty acid biosynthesis, its regulation and metabolism, as the proteins with this fold are predominantly coenzyme A-binding enzymes with a variety of substrates located at their active sites. Results: We have analyzed the structural features and sequences of proteins having the hot dog fold. This study reveals that though the basic architecture of the fold is well conserved in these proteins, significant differences exist in their sequence, nature of substrate and oligomerization. Segments with certain conserved sequence motifs seem to play crucial structural and functional roles in various classes of these proteins. Conclusion: The analysis led to predictions regarding the functional classification and identification of possible catalytic residues of a number of hot dog fold-containing hypothetical proteins whose structures were determined in high throughput structural genomics projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors are grateful to Professor K. P. Abraham for the provision of facilities and encouragement. One of us (PRR) acknowledges the award of a National Associateship by the UGC which facilitated a short-time visit to the Indian Institute of Science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high temperature source has been developed and coupled to a high resolution Fourier transform spectrometer to record emission spectra of acetylene around 3 mu m up to 1455 K under Doppler limited resolution (0.015 cm(-1)). The nu(3)-ground state (GS) and nu(2)+nu(4)+nu(5)(Sigma(+)(u) and Delta(u))-GS bands and 76 related hot bands, counting e and f parities separately, are assigned using semiautomatic methods based on a global model to reproduce all related vibration-rotation states. Significantly higher J-values than previously reported are observed for 40 known substates while 37 new e or f vibrational substates, up to about 6000 cm(-1), are identified and characterized by vibration-rotation parameters. The 3 811 new or improved data resulting from the analysis are merged into the database presented by Robert et al. [Mol. Phys. 106, 2581 (2008)], now including 15 562 lines accessing vibrational states up to 8600 cm(-1). A global model, updated as compared to the one in the previous paper, allows all lines in the database to be simultaneously fitted, successfully. The updates are discussed taking into account, in particular, the systematic inclusion of Coriolis interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behavior of beta-quenched Zr-1 Nb-1Sn was studied in the temperature range 650-1050 degrees C and strain rate range 0.001-100 s(-1) using processing maps. These maps revealed three different domains: a domain of dynamic recovery at temperatures <700 degrees C and at strain rates <3 x 10(-3) s(-1), a domain of dynamic recrystallization in the temperature range 750-950 C-degrees and at strain rates <10(-2) S-1 with a peak at 910 degrees C and 10(-3) S-1 (in alpha + beta phase field), and a domain of large-grain superplasticity in the beta phase field at strain rates <10(-2) s(-1). In order to identify the rate controlling mechanisms involved in these domains, kinetic analysis was carried out to determine the various activation parameters. In addition, the processing maps showed a regime of flow instability spanning both alpha + beta and beta phase fields. The hot deformation behavior of Zr 1Nb-1Sn was compared with that of Zr, Zr-2.5Nb and Zircaloy-2 to bring out the effects of alloy additions. (C) 2006 Elsevier BN. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure and microtexture evolution during static annealing of a hot-extruded AZ21 magnesium alloy was studied. Apart from fine recrystallized equiaxed grains and large elongated deformed grains, a new third kind of abnormal grains that are stacked one after the other in a row parallel to the extrusion direction were observed. The crystallographic misorientation inside these grains was similar to that of the fine recrystallized grains. The large elongated grains exhibited significant in-grain misorientation. A self-consistent mechanistic model was developed to describe the formation of these grain morphologies during dynamic recrystallization (DRX). The texture of pre-extruded material, although lost in DRX, leaves a unique signature which manifests itself in the form of these grain morphologies. The origin of abnormal stacked grains was associated with slow nucleation in pre-extruded grains of a certain orientation. Further annealing resulted in large secondary recrystallized grains with occasional extension twins. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of obtaining relatively high dielectric constant polymer-ceramic composite by incorporating the giant dielectric constant material, CaCu3Ti4O12 (CCTO) in a Poly(vinylidene fluoride) (PVDF) polymer matrix by melt mixing and hot pressing process was demonstrated. The structure, morphology and dielectric properties of the composites were characterized using X-ray diffraction, Thermal analysis. scanning electron microscope, and impedance analyzer. The effective dielectric constant a(epsilon(eff)) of the composite increased with increase in the volume fraction of CCTO at all the frequencies(100 Hz-1 MHz) under study. The dielectric loss did not show any variation up to 40% loading of CCTO, but showed an increasing trend beyond 40%. The room temperature dielectric constant as high as 95 at 100 Hz has been realized for the composite with 55 vol.% of CCTO, which has increased to about 190 at 150 degrees C. Theoretical models like Maxwell's, Clausius-Mossotti, Effective medium theory, logarithmic law and Yamada were employed to rationalize the dielectric behaviour of the composite and discussed. (C) 2010 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behaviour of Mg–3Al alloy has been studied using the processing-map technique. Compression tests were conducted in the temperature range 250–550 °C and strain rate range 3 × 10−4 to 102 s−1 and the flow stress data obtained from the tests were used to develop the processing map. The various domains in the map corresponding to different dissipative characteristics have been identified as follows: (i) grain boundary sliding (GBS) domain accommodated by slip controlled by grain boundary diffusion at slow strain-rates (<10−3 s−1) in the temperature range from 350 to 450 °C, (ii) two different dynamic recrystallization (DRX) domains with a peak efficiency of 42% at 550 °C/10−1 s−1 and 425 °C/102 s−1 governed by stress-assisted cross-slip and thermally activated climb as the respective rate controlling mechanisms and (iii) dynamic recovery (DRV) domain below 300 °C in the intermediate strain rate range from 3 × 10−2 to 3 × 10−1 s−1. The regimes of flow instability have also been delineated in the processing map using an instability criterion. Adiabatic shear banding at higher strain rates (>101 s−1) and solute drag by substitutional Al atoms at intermediate strain rates (3 × 10−2 to 3 × 10−1 s−1) in the temperature range (350–450 °C) are responsible for flow instability. The relevance of these mechanisms with reference to hot working practice of the material has been indicated. The processing maps of Mg–3Al alloy and as-cast Mg have been compared qualitatively to elucidate the effect of alloying with aluminum on the deformation behaviour of magnesium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Films of CuInSe2 were deposited onto glass substrates by a hot wall deposition method using bulk CuInSe2 as a source material. All the deposited CuInSe2 films were found to be polycrystalline in nature exhibiting the chalcopyrite structure with the crystallite orientation along (101),(112),(103),(211),(220),(312) and (400) directions. The photocurrent was found to increase with increase in film thickness and also with increase of light intensity. Photocurrent spectra show a peak related to the band-to-band transition. The spectral response of CuInSe2 thin films was studied by allowing the radiation to pass through a series of interference filters in the wavelength range 700-1200 rim. Films of higher thickness exhibited higher photosensitivity while low thickness films exhibited moderate photosensitivity. CuInSe2-based Solar cells with different types of buffer layers such as US, Cdse, CuInSe2 and CdSe0.7Te0.3 were fabricated. The current and voltage were measured using an optical power meter and an electrometer respectively. The fabricated solar cells were illuminated using 100 mW/cm(2) white light under AM1 conditions. (C) 2006 Elsevier Inc. All rights reserved.