213 resultados para Hilbert space


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decoherence as an obstacle in quantum computation is viewed as a struggle between two forces [1]: the computation which uses the exponential dimension of Hilbert space, and decoherence which destroys this entanglement by collapse. In this model of decohered quantum computation, a sequential quantum computer loses the battle, because at each time step, only a local operation is carried out but g*(t) number of gates collapse. With quantum circuits computing in parallel way the situation is different- g(t) number of gates can be applied at each time step and number gates collapse because of decoherence. As g(t) ≈ g*(t) competition here is even [1]. Our paper improves on this model by slowing down g*(t) by encoding the circuit in parallel computing architectures and running it in Single Instruction Multiple Data (SIMD) paradigm. We have proposed a parallel ion trap architecture for single-bit rotation of a qubit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address the question, does a system A being entangled with another system B, put any constraints on the Heisenberg uncertainty relation (or the Schrodinger-Robertson inequality)? We find that the equality of the uncertainty relation cannot be reached for any two noncommuting observables, for finite dimensional Hilbert spaces if the Schmidt rank of the entangled state is maximal. One consequence is that the lower bound of the uncertainty relation can never be attained for any two observables for qubits, if the state is entangled. For infinite-dimensional Hilbert space too, we show that there is a class of physically interesting entangled states for which no two noncommuting observables can attain the minimum uncertainty equality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Birkhoff-James orthogonality is a generalization of Hilbert space orthogonality to Banach spaces. We investigate this notion of orthogonality when the Banach space has more structures. We start by doing so for the Banach space of square matrices moving gradually to all bounded operators on any Hilbert space, then to an arbitrary C*-algebra and finally a Hilbert C*-module.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address the question, does a system A being entangled with another system B, put any constraints on the Heisenberg uncertainty relation (or the Schrodinger-Robertson inequality)? We find that the equality of the uncertainty relation cannot be reached for any two noncommuting observables, for finite dimensional Hilbert spaces if the Schmidt rank of the entangled state is maximal. One consequence is that the lower bound of the uncertainty relation can never be attained for any two observables for qubits, if the state is entangled. For infinite-dimensional Hilbert space too, we show that there is a class of physically interesting entangled states for which no two noncommuting observables can attain the minimum uncertainty equality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to obtain certain characterizations for the image of a Sobolev space on the Heisenberg group under the heat kernel transform. We give three types of characterizations for the image of a Sobolev space of positive order H-m (H-n), m is an element of N-n, under the heat kernel transform on H-n, using direct sum and direct integral of Bergmann spaces and certain unitary representations of H-n which can be realized on the Hilbert space of Hilbert-Schmidt operators on L-2 (R-n). We also show that the image of Sobolev space of negative order H-s (H-n), s(> 0) is an element of R is a direct sum of two weighted Bergman spaces. Finally, we try to obtain some pointwise estimates for the functions in the image of Schwartz class on H-n under the heat kernel transform. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Engineering the position of the lowest triplet state (T-1) relative to the first excited singlet state (S-1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S-1 and T-1. The factors studied are backbone dimerisation, different donor-acceptor substitutions, and twisted geometry. The largest system studied is an 18 carbon polyene which spans a Hilbert space of about 991 x 10(6). We show that for reverse intersystem crossing process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors. (C) 2014 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tetracene is an important conjugated molecule for device applications. We have used the diagrammatic valence bond method to obtain the desired states, in a Hilbert space of about 450 million singlets and 902 million triplets. We have also studied the donor/acceptor (D/A)-substituted tetracenes with D and A groups placed symmetrically about the long axis of the molecule. In these cases, by exploiting a new symmetry, which is a combination of C-2 symmetry and electron-hole symmetry, we are able to obtain their low-lying states. In the case of substituted tetracene, we find that optically allowed one-photon excitation gaps reduce with increasing D/A strength, while the lowest singlet triplet gap is only wealdy affected. In all the systems we have studied, the excited singlet state, S-i, is at more than twice the energy of the lowest triplet state and the second triplet is very close to the S-1 state. Thus, donor-acceptor-substituted tetracene could be a good candidate in photovoltaic device application as it satisfies energy criteria for singlet fission. We have also obtained the model exact second harmonic generation (SHG) coefficients using the correction vector method, and we find that the SHG responses increase with the increase in D/A strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pair of commuting operators (S,P) defined on a Hilbert space H for which the closed symmetrized bidisc Gamma = {(z(1) + z(2), z(1)z(2)) : vertical bar z(1)vertical bar <= 1, vertical bar z(2)vertical bar <= 1} subset of C-2 is a spectral set is called a Gamma-contraction in the literature. A Gamma-contraction (S, P) is said to be pure if P is a pure contraction, i.e., P*(n) -> 0 strongly as n -> infinity Here we construct a functional model and produce a set of unitary invariants for a pure Gamma-contraction. The key ingredient in these constructions is an operator, which is the unique solution of the operator equation S - S*P = DpXDp, where X is an element of B(D-p), and is called the fundamental operator of the Gamma-contraction (S, P). We also discuss some important properties of the fundamental operator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We theoretically explore quench dynamics in a finite-sized topological fermionic p-wave superconducting wire with the goal of demonstrating that topological order can have marked effects on such non-equilibrium dynamics. In the case studied here, topological order is reflected in the presence of two (nearly) isolated Majorana fermionic end bound modes together forming an electronic state that can be occupied or not, leading to two (nearly) degenerate ground states characterized by fermion parity. Our study begins with a characterization of the static properties of the finite-sized wire, including the behavior of the Majorana end modes and the form of the tunnel coupling between them; a transfer matrix approach to analytically determine the locations of the zero energy contours where this coupling vanishes; and a Pfaffian approach to map the ground state parity in the associated phase diagram. We next study the quench dynamics resulting from initializing the system in a topological ground state and then dynamically tuning one of the parameters of the Hamiltonian. For this, we develop a dynamic quantum many-body technique that invokes a Wick's theorem for Majorana fermions, vastly reducing the numerical effort given the exponentially large Hilbert space. We investigate the salient and detailed features of two dynamic quantities-the overlap between the time-evolved state and the instantaneous ground state (adiabatic fidelity) and the residual energy. When the parity of the instantaneous ground state flips successively with time, we find that the time-evolved state can dramatically switch back and forth between this state and an excited state even when the quenching is very slow, a phenomenon that we term `parity blocking'. This parity blocking becomes prominently manifest as non-analytic jumps as a function of time in both dynamic quantities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A commuting triple of operators (A, B, P) on a Hilbert space H is called a tetrablock contraction if the closure of the set E = {(a(11),a(22),detA) : A = GRAPHICS] with parallel to A parallel to <1} is a spectral set. In this paper, we construct a functional model and produce a set of complete unitary invariants for a pure tetrablock contraction. In this construction, the fundamental operators, which are the unique solutions of the operator equations A - B* P = DPX1DP and B - A* P = DPX2DP where X-1, X-2 is an element of B(D-P) play a pivotal role. As a result of the functional model, we show that every pure tetrablock isometry (A, B, P) on an abstract Hilbert space H is unitarily equivalent to the tetrablock contraction (MG1*+G2z, MG2*+G1z, M-z) on H-DP*(2). (D), where G(1) and G(2) are the fundamental operators of (A*, B*, P*). We prove a Beurling Lax Halmos type theorem for a triple of operators (MF1*+F2z, MF2*+F1z, M-z), where epsilon is a Hilbert space and F-1, F-2 is an element of B(epsilon). We also deal with a natural example of tetrablock contraction on a functions space to find out its fundamental operators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this article is to characterize unitary increment process by a quantum stochastic integral representation on symmetric Fock space. Under certain assumptions we have proved its unitary equivalence to a Hudson-Parthasarathy flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this note, we show that a quasi-free Hilbert module R defined over the polydisk algebra with kernel function k(z,w) admits a unique minimal dilation (actually an isometric co-extension) to the Hardy module over the polydisk if and only if S (-1)(z, w)k(z, w) is a positive kernel function, where S(z,w) is the Szego kernel for the polydisk. Moreover, we establish the equivalence of such a factorization of the kernel function and a positivity condition, defined using the hereditary functional calculus, which was introduced earlier by Athavale [8] and Ambrozie, Englis and Muller [2]. An explicit realization of the dilation space is given along with the isometric embedding of the module R in it. The proof works for a wider class of Hilbert modules in which the Hardy module is replaced by more general quasi-free Hilbert modules such as the classical spaces on the polydisk or the unit ball in a'', (m) . Some consequences of this more general result are then explored in the case of several natural function algebras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hilbert C*-module valued coherent states was introduced earlier by Ali, Bhattacharyya and Shyam Roy. We consider the case when the underlying C*-algebra is a W*-algebra. The construction is similar with a substantial gain. The associated reproducing kernel is now algebra valued, rather than taking values in the space of bounded linear operators between two C*-algebras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work grew out of an attempt to understand a conjectural remark made by Professor Kyoji Saito to the author about a possible link between the Fox-calculus description of the symplectic structure on the moduli space of representations of the fundamental group of surfaces into a Lie group and pairs of mutually dual sets of generators of the fundamental group. In fact in his paper [3] , Prof. Kyoji Saito gives an explicit description of the system of dual generators of the fundamental group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For point to point multiple input multiple output systems, Dayal-Brehler-Varanasi have proved that training codes achieve the same diversity order as that of the underlying coherent space time block code (STBC) if a simple minimum mean squared error estimate of the channel formed using the training part is employed for coherent detection of the underlying STBC. In this letter, a similar strategy involving a combination of training, channel estimation and detection in conjunction with existing coherent distributed STBCs is proposed for noncoherent communication in Amplify-and-Forward (AF) relay networks. Simulation results show that the proposed simple strategy outperforms distributed differential space-time coding for AF relay networks. Finally, the proposed strategy is extended to asynchronous relay networks using orthogonal frequency division multiplexing.