49 resultados para High performance concrete


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new straight forward technique based on dynamic inversion, which is applied for tracking the pilot commands in high performance aircrafts.Pilot commands assumed in longitudinal mode are normal acceleration and total velocity(while roll angle and lateral acceleration are maintained at zero). In lateral mode, roll rate and total velocity are used as pilot commands (while climb rate and lateral acceleration are maintained at zero). Ensuring zero lateral acceleration leads to a better turn co-ordination. A six degree-of-freedom model of F-16 aircraft is used for both control design as well as simulation studies. Promising results are obtained which are found to be superior as compared to an existing approach (which is also based on dynamic inversion). The new approach has two potential benefits, namely reduced oscillatory response and reduced control magnitude. Another advantage of this approach is that it leads to a significant reduction of tuning parameters in the control design process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on dynamic inversion, a relatively straightforward approach is presented in this paper for nonlinear flight control design of high performance aircrafts, which does not require the normal and lateral acceleration commands to be first transferred to body rates before computing the required control inputs. This leads to substantial improvement of the tracking response. Promising results are obtained from six degree-offreedom simulation studies of F-16 aircraft, which are found to be superior as compared to an existing approach (which is also based on dynamic inversion). The new approach has two potential benefits, namely reduced oscillatory response (including elimination of non-minimum phase behavior) and reduced control magnitude. Next, a model-following neuron-adaptive design is augmented the nominal design in order to assure robust performance in the presence of parameter inaccuracies in the model. Note that in the approach the model update takes place adaptively online and hence it is philosophically similar to indirect adaptive control. However, unlike a typical indirect adaptive control approach, there is no need to update the individual parameters explicitly. Instead the inaccuracy in the system output dynamics is captured directly and then used in modifying the control. This leads to faster adaptation, which helps in stabilizing the unstable plant quicker. The robustness study from a large number of simulations shows that the adaptive design has good amount of robustness with respect to the expected parameter inaccuracies in the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the first demonstration of metal-insulator-metal (MIM) capacitors with Eu2O3 dielectric for analog and DRAM applications. The influence of different anneal conditions on the electrical characteristics of the fabricated MIM capacitors is studied. FG anneal results in high capacitance density (7 fF/mu m(2)), whereas oxygen anneal results in low quadratic voltage coefficient of capacitance (VCC) (194 ppm/V-2 at 100 kHz), and argon anneal results in low leakage current density (3.2 x 10(-8) A/cm(2) at -1 V). We correlate these electrical results with the surface chemical states of the films through X-ray photoelectron spectroscopy measurements. In particular, FG anneal and argon anneal result in sub-oxides, which modulate the electrical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic acids are important constituents of fruit juices. They render tartness, flavour and specific taste to fruit juices. Shelf life and stability of fruit juices are important factors, which determine their nutritional quality and freshness. In this view, the effect of storage on the concentration of organic acids in commercially packed fruit juices is studied by reverse phase high performance liquid chromatography (RP-HPLC). Ten packed fruit juices from two different brands are stored at 30 C for 24, 48 and 72 hours. A reverse phase high performance liquid chromatographic method is used to determine the concentration of oxalic, tartaric, malic, ascorbic and citric acid in the fruit juices during storage. The chromatographic analysis of organic acids is carried out using mobile phase 0.5% (w/v) ammonium dihydrogen orthophosphate buffer (pH 2.8) on C18 column with UV-Vis detector. The results show that the concentration of organic acids generally decreases in juices under study with the increase in storage time. All the fruit juices belonging to tropicana brand underwent less organic acid degradation in comparison to juices of real brand. Orange fruit juice is found to be least stable among the juices under study, after the span of 72 hours. Amongst all the organic acids under investigation minimum stability is shown by ascorbic acid followed by malic and citric acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of nonlinear finite element analysis (FEA) of three point bending specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Cracking strength criterion has been used for simulation of crack propagation by conducting nonlinear FEA. The description about FEA using crack strength criterion has been outlined. Bi-linear tension softening relation has been used for modeling the cohesive stresses ahead of the crack tip. Numerical studies have been carried out on fracture analysis of three point bending specimens. It is observed from the studies that the computed values from FEA are in very good agreement with the corresponding experimental values. The computed values of stress vs crack width will be useful for evaluation of fracture energy, crack tip opening displacement and fracture toughness. Further, these values can also be used for crack growth study, remaining life assessment and residual strength evaluation of concrete structural components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Halloysite nanotubes (HNTs) of the dimension 50nm x 1-3 mu m (diameter x length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of crack growth study and remaining life assessment of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Flexural fatigue tests have been conducted on HSC, HSC1 and UHSC beams under constant amplitude loading with a stress ratio of 0.2. It is observed from the studies that (i) the failure patterns of HSC1 and UHSC beams indicate their ductility as the member was intact till the crack propagated up to 90% of the beam depth and (ii) the remaining life decreases with increase of notch depth (iii) the failure of the specimen is influenced by the frequency of loading. A ``Net K'' model has been proposed by using non-linear fracture mechanics principles for crack growth analysis and remaining life prediction. SIF (K) has been computed by using the principle of superposition. SIP due to the cohesive forces applied on the effective crack face inside the process zone has been obtained through Green's function approach by applying bi-linear tension softening relationship to consider the cohesive the stresses acting ahead of the crack tip. Remaining life values have been have been predicted and compared with the corresponding experimental values and observed that they are in good agreement with each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel composite architecture consisting of a periodic arrangement of closely-spaced spheres of a stiff material embedded in a soft matrix is proposed for extremely high damping and shock absorption capacity. Efficacy of this architecture is demonstrated by compression loading a composite, where multiple steel balls were stacked upon each other in a polydimethylsiloxane (PDMS) matrix, at a low strain-rate of 0.05 s(-1) and a very high strain-rate of >2400 s(-1). The balls slide over each other upon loading, and revert to their original position when the load is removed. Because of imposition of additional strains into the matrix via this reversible, constrained movement of the balls, the composite absorbs significantly larger energy and endures much lesser permanent damage than the monolithic PDMS during both quasi-static and impact loadings. During the impact loading, energy absorbed per unit weight for the composite was, 8 times larger than the monolithic PDMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents the details of estimation of fracture parameters for high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization of ingredients of HSC, HSC1 and UHSC have been provided. Experiments have been carried out on beams made up of HSC, HSC1 and UHSC considering various sizes and notch depths. Fracture characteristics such as size independent fracture energy (G(f)), size of fracture process zone (C-f), fracture toughness (K-IC) and crack tip opening displacement (CTODc) have been estimated based on the experimental observations. From the studies, it is observed that (i) UHSC has high fracture energy and ductility inspite of having a very low value of C-f; (ii) relatively much more homogeneous than other concretes, because of absence of coarse aggregates and well-graded smaller size particles; (iii) the critical SIF (K-IC) values are increasing with increase of beam depth and decreasing with increase of notch depth. Generally, it can be noted that there is significant increase in fracture toughness and CTODc. They are about 7 times in HSC1 and about 10 times in UHSC compared to those in HSC; (iv) for notch-to-depth ratio 0.1, Bazant's size effect model slightly overestimates the maximum failure loads compared to experimental observations and Karihaloo's model slightly underestimates the maximum failure loads. For the notch-to-depth ratio ranging from 0.2 to 0.4 for the case of UHSC, it can be observed that, both the size effect models predict more or less similar maximum failure loads compared to corresponding experimental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work reports the compositional analysis of thirteen different packed fruit juices using high performance liquid chromatography (HPLC). Vitamin C, organic acids (citric and malic) and sugars (fructose, glucose and sucrose) were separated, analyzed and quantified using different reverse phase methods. A new rapid reverse phase HPLC method was developed for routine analysis of vitamin C in fruit juices. The precision results of the methods showed that the relative standard deviations of the repeatability and reproducibility were < 0.05 and < 0.1 respectively. Correlation coefficient of the calibration models developed was found to be higher than 0.99 in each case. It has been found that the content of Vitamin C was less variable amongst different varieties involved in the study. It is also observed that in comparison to fresh juices, the packed juices contain lesser amounts of vitamin C. Citric acid was found as the major organic acids present in packed juices while maximum portion of sugars was of sucrose. Comparison of the amount of vitamin C, organic acids and sugars in same fruit juice of different commercial brands is also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-performance supercapacitor electrode based on unique 1D Co-Ni/Co3O4-NiO core/shell nano-heterostructures is designed and fabricated. The nano-heterostructures exhibit high specific capacitance (2013 F g(-1) at 2.5 A g(-1)), high energy and power density (23Wh kg(-1) and 5.5kW kg(-1), at the discharge current density of 20.8 A g(-1)), good capacitance retention and long cyclicality. The remarkable electrochemical property of the large surface area nano-heterostructures is demonstrated based on the effective nano-architectural design of the electrode with the coexistence of the two highly redox active materials at the surface supported by highly conducting metal alloy channel at the core for faster charge transport. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous alpha-Fe2O3 nanostructures have been synthesized by a simple sol-gel route. The alpha-Fe2O3 nanostructures are poorly crystalline and porous with BET surface area of 386 m(2) g(-1). The high discharge capacitance of alpha-Fe2O3 electrodes is 300 F g(-1) when the electrodes are cycled in 0.5 M Na2SO3 at a current density of 1 A g(-1). The capacitance retention after 1000 cycles is about 73% of the initial capacitance at a current density of 2 A g(-1). The high discharge capacitance of alpha-Fe2O3 in comparison with the literature reports are attributed to high surface area and porosity of the iron oxide prepared in the present study. As the iron oxides are inexpensive, the capacity of alpha-Fe2O3 is expected to be of potential use for supercapacitor application. (C) 2014 Elsevier B.V. All rights reserved.