22 resultados para Heteroclinic Orbits


Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of N-body simulations we investigate the impact of minor mergers on the angular momentum and dynamical properties of the merger remnant. Our simulations cover a range of initial orbital characteristics and gas-to-stellar mass fractions (from 0 to 20%), and include star formation and supernova feedback. We confirm and extend previous results by showing that the specific angular momentum of the stellar component always decreases independently of the orbital parameters or morphology of the satellite, and that the decrease in the rotation velocity of the primary galaxy is accompanied by a change in the anisotropy of the orbits. However, the decrease affects only the old stellar population, and not the new population formed from gas during the merging process. This means that the merging process induces an increasing difference in the rotational support of the old and young stellar components, with the old one lagging with respect to the new. Even if our models are not intended specifically to reproduce the Milky Way and its accretion history, we find that, under certain conditions, the modeled rotational lag found is compatible with that observed in the Milky Way disk, thus indicating that minor mergers can be a viable way to produce it. The lag can increase with the vertical distance from the disk midplane, but only if the satellite is accreted along a direct orbit, and in all cases the main contribution to the lag comes from stars originally in the primary disk rather than from stars in the satellite galaxy. We also discuss the possibility of creating counter-rotating stars in the remnant disk, their fraction as a function of the vertical distance from the galaxy midplane, and the cumulative effect of multiple mergers on their creation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the recently developed model predictive static programming (MPSP), a suboptimal guidance logic is presented in this paper for formation flying of small satellites. Due to the inherent nature of the problem formulation, MPSP does not require the system dynamics to be linearized. The proposed guidance scheme is valid both for high eccentricity chief satellite orbits as well as large separation distance between chief and deputy satellites. Moreover, since MPSP poses the desired conditions as a set of `hard constraints', the final accuracy level achieved is very high. The proposed guidance scheme has been tested successfully for a variety of initial conditions and for a variety of formation commands as well. Comparison with standard Linear Quadratic Regulator (LQR) solution (which serves as a guess solution for MPSP) and another nonlinear controller, State Dependent Riccati Equation (SDRE) reveals that MPSP guidance achieves the objective with higher accuracy and with lesser amount of control usage as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the dynamics of a sinusoidally driven ferromagnetic martensitic ribbon by adopting a recently introduced model that involves strain and magnetization as order parameters. Retaining only the dominant mode of excitation we reduce the coupled set of partial differential equations for strain and magnetization to a set of coupled ordinary nonlinear equations for the strain and magnetization amplitudes. The equation for the strain amplitude takes the form of parametrically driven oscillator. Finite strain amplitude can only be induced beyond a critical value of the strength of the magnetic field. Chaotic response is seen for a range of values of all the physically interesting parameters. The nature of the bifurcations depends on the choice of temperature relative to the ordering of the Curie and the martensite transformation temperatures. We have studied the nature of response as a function of the strength and frequency of the magnetic field, and magneto-elastic coupling. In general, the bifurcation diagrams with respect to these parameters do not follow any standard route. The rich dynamics exhibited by the model is further illustrated by the presence of mixed mode oscillations seen for low frequencies. The geometric structure of the mixed mode oscillations in the phase space has an unusual deep crater structure with an outer and inner cone on which the orbits circulate. We suggest that these features should be seen in experiments on driven magneto-martensitic ribbons. (C) 2014 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We characterize the eigenfunctions of an equilateral triangle billiard in terms of its nodal domains. The number of nodal domains has a quadratic form in terms of the quantum numbers, with a non-trivial number-theoretic factor. The patterns of the eigenfunctions follow a group-theoretic connection in a way that makes them predictable as one goes from one state to another. Extensive numerical investigations bring out the distribution functions of the mode number and signed areas. The statistics of the boundary intersections is also treated analytically. Finally, the distribution functions of the nodal loop count and the nodal counting function are shown to contain information about the classical periodic orbits using the semiclassical trace formula. We believe that the results belong generically to non-separable systems, thus extending the previous works which are concentrated on separable and chaotic systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GX 301-2, a bright high-mass X-ray binary with an orbital period of 41.5 d, exhibits stable periodic orbital intensity modulations with a strong pre-periastron X-ray flare. Several models have been proposed to explain the accretion at different orbital phases, invoking accretion via stellar wind, equatorial disc, and accretion stream from the companion star. We present results from exhaustive orbital phase resolved spectroscopic measurements of GX 301-2 using data from the Gas Slit Camera onboard MAXI. Using spectroscopic analysis of the MAXI data with unprecedented orbital coverage for many orbits continuously, we have found a strong orbital dependence of the absorption column density and equivalent width of the iron emission line. A very large equivalent width of the iron line along with a small value of the column density in the orbital phase range 0.10-0.30 after the periastron passage indicates the presence of high density absorbing matter behind the neutron star in this orbital phase range. A low energy excess is also found in the spectrum at orbital phases around the pre-periastron X-ray flare. The orbital dependence of these parameters are then used to examine the various models about mode of accretion on to the neutron star in GX 301-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study motion around a static Einstein and pure Lovelock black hole in higher dimensions. It is known that in higher dimensions bound orbits exist only for a pure Lovelock black hole in all even dimensions, D = 2N + 2, where N is the degree of Lovelock polynomial action. In particular, we compute periastron shift and light bending, and the latter is given by one of the transverse spatial components of the Riemann curvature tensor. We also consider the pseudo-Newtonian potentials and Kruskal coordinates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent approach for the construction of constant dimension subspace codes, designed for error correction in random networks, is to consider the codes as orbits of suitable subgroups of the general linear group. In particular, a cyclic orbit code is the orbit of a cyclic subgroup. Hence a possible method to construct large cyclic orbit codes with a given minimum subspace distance is to select a subspace such that the orbit of the Singer subgroup satisfies the distance constraint. In this paper we propose a method where some basic properties of difference sets are employed to select such a subspace, thereby providing a systematic way of constructing cyclic orbit codes with specified parameters. We also present an explicit example of such a construction.