59 resultados para Heisenberg antiferromagnets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of entanglement in a 3-spin chain with nearest-neighbor Heisenberg-XY interactions for different initial states is investigated here. In an NMR experimental implementation, we generate multipartite entangled states starting from initial separable pseudo-pure states by simulating nearest-neighbor XY interactions in a 3-spin linear chain of nuclear spin qubits. For simulating XY interactions, we follow algebraic method of Zhang et al. Phys. Rev. A 72 (2005) 012331]. Bell state between end qubits has been generated by using only the unitary evolution of the XY Hamiltonian. For generating W-state and GHZ-state a single qubit rotation is applied on second and all the three qubits, respectively after the unitary evolution of the XY Hamiltonian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the analytic extension property of the Schrodinger propagator for the Heisenberg sublaplacian and some related operators. The result for the sublaplacian is proved by interpreting the sublaplacian as a direct integral of an one parameter family of dilated special Hermite operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterise higher order Riesz transforms on the Heisenberg group and also show that they satisfy dimension-free bounds under some assumptions on the multipliers. Using transference theorems, we deduce boundedness theorems for Riesz transforms on the reduced Heisenberg group and hence also for the Riesz transforms associated to multiple Hermite and Laguerre expansions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study here different regions in phase diagrams of the spin-1/2, spin-1 and spin-3/2 one-dimensional antiferromagnetic Heisenberg systems with frustration (next-nearest-neighbor interaction J(2)) and dimerization (delta). In particular, we analyze the behaviors of the bipartite entanglement entropy and fidelity at the gapless to gapped phase transitions and across the lines separating different phases in the J(2)-delta plane. All the calculations in this work are based on numerical exact diagonalizations of finite systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to obtain certain characterizations for the image of a Sobolev space on the Heisenberg group under the heat kernel transform. We give three types of characterizations for the image of a Sobolev space of positive order H-m (H-n), m is an element of N-n, under the heat kernel transform on H-n, using direct sum and direct integral of Bergmann spaces and certain unitary representations of H-n which can be realized on the Hilbert space of Hilbert-Schmidt operators on L-2 (R-n). We also show that the image of Sobolev space of negative order H-s (H-n), s(> 0) is an element of R is a direct sum of two weighted Bergman spaces. Finally, we try to obtain some pointwise estimates for the functions in the image of Schwartz class on H-n under the heat kernel transform. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent theorem of S. Alesker, S. Artstein-Avidan and V. Milman characterises the Fourier transform on R-n as essentially the only transform on the space of tempered distributions which interchanges convolutions and pointwise products. In this note we study the image of the Schwartz space on the Heisenberg group under the Fourier transform and obtain a similar characterisation for the Fourier transform on the Heisenberg group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study Heisenberg spin-1/2 and spin-1 chains with alternating ferromagnetic (J(1)(F)) and antiferromagnetic (J(1)(A)) nearest-neighbor interactions and a ferromagnetic next-nearest-neighbor interaction (J(2)(F)). In this model frustration is present due to the non-zero J(2)(F). The model with site spin s behaves like a Haldane spin chain, with site spin 2s in the limit of vanishing J(2)(F) and large J(1)(F)/J(1)(A). We show that the exact ground state of the model can be found along a line in the parameter space. For fixed J(1)(F), the phase diagram in the space of J(1)(A)-J(2)(F) is determined using numerical techniques complemented by analytical calculations. A number of quantities, including the structure factor, energy gap, entanglement entropy and zero temperature magnetization, are studied to understand the complete phase diagram. An interesting and potentially important feature of this model is that it can exhibit a macroscopic magnetization jump in the presence of a magnetic field; we study this using an effective Hamiltonian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we prove weighted mixed norm estimates for Riesz transforms on the Heisenberg group and Riesz transforms associated to the special Hermite operator. From these results vector-valued inequalities for sequences of Riesz transforms associated to generalised Grushin operators and Laguerre operators are deduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin-density maps, deduced from polarized neutron diffraction experiments, for both the pair and chain compounds of the system Mn2+Cu2+ have been reported recently. These results have motivated us to investigate theoretically the spin populations in such alternant mixed-spin systems. In this paper, we report our studies on the one-dimensional ferrimagnetic systems (S-A,S-B)(N) where hi is the number of AB pairs. We have considered all cases in which the spin Sri takes on allowed values in the range I to 7/2 while the spin S-B is held fixed at 1/2. The theoretical studies have been carried out on the isotropic Heisenberg model, using the density matrix renormalization group method. The effect of the magnitude of the larger spin SA On the quantum fluctuations in both A and B sublattices has been studied as a function of the system size N. We have investigated systems with both periodic and open boundary conditions, the latter with a view to understanding end-of-chain effects. The spin populations have been followed as a function of temperature as well as an applied magnetic field. High-magnetic fields are found to lead to interesting re-entrant behavior. The ratio of spin populations P-A-P-B is not sensitive to temperature at low temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The temperature dependence of the dielectric constant of diamond has been measured over the temperature range 50-2OO"c. The value of E-ldc dT over this range is + 1 x 10-j. Details of the method of measuring the temperature coefficient of dielectric constant are also given. The magnitude and sign of c-ldc, dT for diamond has been theoretically calculated using Maxwell's relationship and Kramers-Heisenberg theory. The agreement between theoretical and experimental values is extremely good.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we plan to demonstrate the usefulness of `Gutzmer's formula' in the study of various problems related to the Segal-Bargmann transform. Gutzmer's formula is known in several contexts: compact Lie groups, symmetric spaces of compact and noncompact type, Heisenberg groups and Hermite expansions. We apply Gutzmer's formula to study holomorphic Sobolev spaces, local Peter-Weyl theorems, Paley-Wiener theorems and Poisson semigroups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-precision measurement of the electrical resistance of nickel along its critical line, a first attempt of this kind, as a function of pressure to 47.5 kbar is reported. Our analysis yields the values of the critical exponents α=α’=-0.115±0.005 and the amplitude ratios ‖A/A’‖=1.17±0.07 and ‖D/D’‖=1.2±0.1. These values are in close agreement with those predicted by renormalization-group (RG) theory. Moreover, this investigation provides an unambiguous experimental verification to one of the key consequences of RG theory that the critical exponents and amplitudes ratios are insensitive to pressure variation in nickel, a Heisenberg ferromagnet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the possibility of a direct second-order transition out of a collinear Neel phase to a paramagnetic spin liquid in two-dimensional quantum antiferromagnets. Contrary to conventional wisdom, we show that such second-order quantum transitions can potentially occur to certain spin liquid states popular in theories of the cuprates. We provide a theory of this transition and study its universal properties in an epsilon expansion. The existence of such a transition has a number of interesting implications for spin-liquid-based approaches to the underdoped cuprates. In particular it considerably clarifies existing ideas for incorporating antiferromagnetic long range order into such a spin-liquid-based approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Randomly diluted quantum boson and spin models in two dimensions combine the physics of classical percolation with the well-known dimensionality dependence of ordering in quantum lattice models. This combination is rather subtle for models that order in two dimensions but have no true order in one dimension, as the percolation cluster near threshold is a fractal of dimension between 1 and 2: two experimentally relevant examples are the O(2) quantum rotor and the Heisenberg antiferromagnet. We study two analytic descriptions of the O(2) quantum rotor near the percolation threshold. First a spin-wave expansion is shown to predict long-ranged order, but there are statistically rare points on the cluster that violate the standard assumptions of spin-wave theory. A real-space renormalization group (RSRG) approach is then used to understand how these rare points modify ordering of the O(2) rotor. A new class of fixed points of the RSRG equations for disordered one-dimensional bosons is identified and shown to support the existence of long-range order on the percolation backbone in two dimensions. These results are relevant to experiments on bosons in optical lattices and superconducting arrays, and also (qualitatively) for the diluted Heisenberg antiferromagnet La-2(Zn,Mg)(x)Cu1-xO4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential of Bi2CuO4 as the first oxide system to show a linear-chain magnetic behaviour is examined. Electron diffraction studies do not resolve the previously reported ambiguity regarding its space group. The magnetic susceptibility data at high temperatures are best fitted to a uniform antiferromagnetic spin-1/2 Heisenberg chain. At low temperatures, however, neither the uniform nor the alternating Heisenberg antiferromagnetic model fits the data. Magnetic susceptibility data over the entire temperature range can be fitted if one assumes dimeric units with a nearly degenerate second singlet state close to the ground state, these states being separated from an excited triplet state by an energy gap. A simple heuristic model of a dimer that gives such an energy level spectrum is examined.