19 resultados para Heating system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the system La-Cr-O, there are three ternary oxides (LaCrO4, La2Cr3O12, and La2CrO6) that contain Cr in higher valence states (V or VI). On heating, LaCrO4 decomposes to LaCrO3, La2Cr3O12 to a mixture of LaCrO4 and Cr2O3, and La2CrO6 to LaCrO3 and La2O3 with loss of oxygen. The oxygen potentials corresponding to these decomposition reactions are determined as a function of temperature using solid-state cells incorporating yttria-stabilized zirconia as the electrolyte. Measurements are made from 840K to the decomposition temperature of the ternary oxides in pure oxygen. The standard Gibbs energies of formation of the three ternary oxides are derived from the reversible electromotive force (EMF) of the three cells. The standard enthalpy of formation and standard entropy of the three ternary oxides at 298.15K are estimated. Subsolidus phase relations in the system La-Cr-O are computed from thermodynamic data and displayed as isothermal sections at several temperature intervals. The decomposition temperatures in air are 880 (+/- 3)K for La2Cr3O12, 936 (+/- 3)K for LaCrO4, and 1056 (+/- 4)K for La2CrO6.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, L beta', to the one dimensional (1D) rippled, P beta' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel L beta' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of similar to 2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase-change cooling technique is a suitable method for thermal management of electronic equipment subjected to transient or cyclic heat loads. The thermal performance of a phase-change based heat sink under cyclic heat load depends on several design parameters, namely, applied heat flux, cooling heat transfer coefficient, thermophysical properties of phase-change materials (PCMs), and physical dimensions of phase-change storage system during melting and freezing processes. A one-dimensional conduction heat transfer model is formulated to evaluate the effectiveness of preliminary design of practical PCM-based energy storage units. In this model, the phase-change process of the PCM is divided into melting and solidification subprocesses, for which separate equations are written. The equations are solved sequentially and an explicit closed-form solution is obtained. The efficacy of analytical model is estimated by comparing with a finite-volume-based numerical solution for both transient and cyclic heat loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to quantify leakage flow and windage heating for labyrinth seals with honeycomb lands is critical in understanding gas turbine engine system performance and predicting its component life. Variety of labyrinth seal configurations (number of teeth, stepped or straight, honeycomb cell size) are in use in gas turbines, and for each configuration, there are many geometric factors that can impact a seal's leakage and windage characteristics. This paper describes the development of a numerical methodology aimed at studying the effect of honeycomb lands on leakage and windage heating. Specifically, a three-dimensional computational fluid dynamics (CFD) model is developed utilizing commercial finite volume-based software incorporating the renormalization group (RNG) k-epsilon turbulence model with modified Schmidt number. The modified turbulence model is benchmarked and fine-tuned based on several experiments. Using this model, a broad parametric study is conducted by varying honeycomb cell size, pressure ratio (PR), and radial clearance for a four-tooth straight-through labyrinth seal. The results show good agreement with available experimental data. They further indicate that larger honeycomb cells predict higher seal leakage and windage heating at tighter clearances compared to smaller honeycomb cells and smooth lands. However, at open seal clearances larger honeycomb cells have lower leakage compared to smaller honeycomb cells.